
Position-based Dynamics
for ODEs with inequality constraints

Steffen Plunder
Supervisor: Sara Merino-Aceituno
PDE Afternoon

10 Nov 2021



Motivation



What I want to do ,

Simulation of epithelial cells

But: There are inequality constraints in the model:
non-overlapping constraints between nuclei cores,
black line is a chain of links with fixed maximal length.

1 / 24



What I want to do ,

Simulation of epithelial cells

But: There are inequality constraints in the model:
non-overlapping constraints between nuclei cores,
black line is a chain of links with fixed maximal length.

1 / 24



What I have to do /

1. Solve an ODE

¤G = 5 (G) + . . .

with (many) inequality constraints

6:(G(C)) ≥ 0 for all :.

2. Do it fast...

2 / 24



What I have to do /

1. Solve an ODE

¤G = 5 (G) + . . .

with (many) inequality constraints

6:(G(C)) ≥ 0 for all :.

2. Do it fast...

2 / 24



What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.

At the same time, I can crash into inequality constraints in real-time...

Computer graphics uses Position-based Dynamics (PBD). Let’s try that!

3 / 24



What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.

At the same time, I can crash into inequality constraints in real-time...

Computer graphics uses Position-based Dynamics (PBD). Let’s try that!

3 / 24



What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.

At the same time, I can crash into inequality constraints in real-time...

Computer graphics uses Position-based Dynamics (PBD). Let’s try that!

3 / 24



Good news: PBD is very stable!

It has not problems to simulate
a stack of objects, like this...

...many mathematically more
rigorous methods would lead
to jittering and a colapsing
stack!

4 / 24



Video of PBD

(embedding videos in LATEXis annoying)

5 / 24



Bad news...

Position-based Dynamics (PBD) is not a convergent method.

6 / 24



Bad news...

Position-based Dynamics (PBD) is not a convergent method.

The End.

6 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application

1. numerical error�model error
I Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application
1. numerical error�model error

I Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application
1. numerical error�model error

I Visually identical to other numerical methods.
2. Speed: Our simulations are almost 100 times faster now.

3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application
1. numerical error�model error

I Visually identical to other numerical methods.
2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.

4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application
1. numerical error�model error

I Visually identical to other numerical methods.
2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Bad news?

Position-based Dynamics is probably not a convergent method, but very stable and fast.

For our application
1. numerical error�model error

I Visually identical to other numerical methods.
2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

7 / 24



Overview of this talk

1. Position-based Dynamics for first order systems,
2. Filippov ODEs and numerical integration,
3. ...attempts to get error bounds.

8 / 24



Position-based Dynamics for first order
systems



The toy model: First order hard-sphere model

We consider # particles (in 2D) with radius ' = 1 and with positions
^ = (-1 , . . . , -# ) ∈ R2# .

We consider this complementarity system


¤-8 = 58(^ ) +

<∑
:=1

�:∇6:(^ ) for all 8 = 1, . . . , # ,

6: ≥ 0, �: ≥ 0 and 6:�: = 0 for all : = 1, . . . , <,
-8(0) = - init

8 for all 8 = 1, . . . , #

where
6:(^ ) B ‖-8 − -9 ‖ − 2

are the < =
( 2
#

)
constraints for non-overlapping spheres. 1

1: = 1, . . . , < corresponds to all pairs {1, 2}, {1, 3}, . . . , {# − 1, #}.
9 / 24



The toy model: First order hard-sphere model

We consider # particles (in 2D) with radius ' = 1 and with positions
^ = (-1 , . . . , -# ) ∈ R2# . We consider this complementarity system


¤-8 = 58(^ ) +

<∑
:=1

�:∇6:(^ ) for all 8 = 1, . . . , # ,

6: ≥ 0, �: ≥ 0 and 6:�: = 0 for all : = 1, . . . , <,
-8(0) = - init

8 for all 8 = 1, . . . , #

where
6:(^ ) B ‖-8 − -9 ‖ − 2

are the < =
( 2
#

)
constraints for non-overlapping spheres. 1

1: = 1, . . . , < corresponds to all pairs {1, 2}, {1, 3}, . . . , {# − 1, #}.
9 / 24



Incredients of Position-based Dynamics

1. Explicit Euler: Numerical flow map

Φ
5

ℎ
(^ ) = x + ℎ f (^ )

2. Proximal maps: For a given constraint 6: , the proximal operator is

prox6: (G) = argmin
H∈R2# ,6: (H)≥0

‖G − H‖

Numerical flow map of PBD

ΦPBD
ℎ
(^ ) = prox6< ◦ · · · ◦ prox61 ◦Φ 5

ℎ
(^ )

Hence, numerical solution is
^ =+1 = ΦPBD

ℎ
(^ =)

10 / 24



Incredients of Position-based Dynamics

1. Explicit Euler: Numerical flow map

Φ
5

ℎ
(^ ) = x + ℎ f (^ )

2. Proximal maps: For a given constraint 6: , the proximal operator is

prox6: (G) = argmin
H∈R2# ,6: (H)≥0

‖G − H‖

Numerical flow map of PBD

ΦPBD
ℎ
(^ ) = prox6< ◦ · · · ◦ prox61 ◦Φ 5

ℎ
(^ )

Hence, numerical solution is
^ =+1 = ΦPBD

ℎ
(^ =)

10 / 24



Incredients of Position-based Dynamics

1. Explicit Euler: Numerical flow map

Φ
5

ℎ
(^ ) = x + ℎ f (^ )

2. Proximal maps: For a given constraint 6: , the proximal operator is

prox6: (G) = argmin
H∈R2# ,6: (H)≥0

‖G − H‖

Numerical flow map of PBD

ΦPBD
ℎ
(^ ) = prox6< ◦ · · · ◦ prox61 ◦Φ 5

ℎ
(^ )

Hence, numerical solution is
^ =+1 = ΦPBD

ℎ
(^ =)

10 / 24



Incredients of Position-based Dynamics

1. Explicit Euler: Numerical flow map

Φ
5

ℎ
(^ ) = x + ℎ f (^ )

2. Proximal maps: For a given constraint 6: , the proximal operator is

prox6: (G) = argmin
H∈R2# ,6: (H)≥0

‖G − H‖

Numerical flow map of PBD

ΦPBD
ℎ
(^ ) = prox6< ◦ · · · ◦ prox61 ◦Φ 5

ℎ
(^ )

Hence, numerical solution is
^ =+1 = ΦPBD

ℎ
(^ =)

10 / 24



11 / 24



Computational budget

Computation of ΦPBD
ℎ
(^ ) is

very fast,

⇒we can choose very
small step-size ℎ,

⇒within each step the
constraint violation remains
small.

But, we have no error
bounds for the accuracy of
the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

12 / 24



Computational budget

Computation of ΦPBD
ℎ
(^ ) is

very fast,

⇒we can choose very
small step-size ℎ,

⇒within each step the
constraint violation remains
small.

But, we have no error
bounds for the accuracy of
the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

12 / 24



Computational budget

Computation of ΦPBD
ℎ
(^ ) is

very fast,

⇒we can choose very
small step-size ℎ,

⇒within each step the
constraint violation remains
small.

But, we have no error
bounds for the accuracy of
the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

12 / 24



Computational budget

Computation of ΦPBD
ℎ
(^ ) is

very fast,

⇒we can choose very
small step-size ℎ,

⇒within each step the
constraint violation remains
small.

But, we have no error
bounds for the accuracy of
the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

12 / 24



Computational budget

Computation of ΦPBD
ℎ
(^ ) is

very fast,

⇒we can choose very
small step-size ℎ,

⇒within each step the
constraint violation remains
small.

But, we have no error
bounds for the accuracy of
the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

12 / 24



Filippov ODEs and numerical integration



Numerics 101

Consider ¤G = 5 (G).

Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.

Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



Numerics 101

Consider ¤G = 5 (G). Exact flow:
!C(G) = 4 CG.

Numerical flow (explicit Euler):
Φℎ(G) = G + ℎ 5 (G).

Consistency:
‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Stability:
‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + !ℎ)‖G − H‖.
Convergence: For fixed ) > 0,

‖!=ℎ(G)−Φ=ℎ(G)‖ ≤ "ℎ for all =, ℎ with =ℎ < ).

A typical result is consistency + stability⇒ convergence.

13 / 24



In which sense do exact solutions even exists?

14 / 24



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

15 / 24



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

(Think of H as the height of
the apple over the ground.)

15 / 24



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

(Think of H as the height of the
apple over the ground.) Here:

� =

{
0 before impact,
1 after impact.

On the ground, the
complementary condition
implies (if ¤H exists):

0 = ¤H� + H ¤�
= (−1 + �)�.

15 / 24



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

(Think of H as the height of the
apple over the ground.) Here:

� =

{
0 before impact,
1 after impact.

...or as Filippov ODE:

¤H ∈


{−1} H > 0
[−1, 0] H = 0
{0} H < 0

15 / 24



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

(Think of H as the height of the
apple over the ground.) Here:

� =

{
0 before impact,
1 after impact.

...or as Filippov ODE:

¤H ∈


{−1} H > 0
[−1, 0] H = 0
{0} H < 0

Existence theory,
allows extension of ODE
to infeasible positions.

15 / 24



Does numerical integration work for such systems?

16 / 24



Discontinious right-hand sides: The sliding case

Example: Sliding case

f + B

(
1
−1

)
f − B

(
2
1

)
¤x ∈


f + G2 > 0
co({ f + , f −}) G2 = 0
f − G2 < 0

co{. . . } is the closure of the
convex hull.

17 / 24



Discontinious right-hand sides: The sliding case

Example: Sliding case

f + B

(
1
−1

)
f − B

(
2
1

)
¤x ∈


f + G2 > 0
co({ f + , f −}) G2 = 0
f − G2 < 0

co{. . . } is the closure of the
convex hull.

17 / 24



...towards error bounds for PBD



Challenge in the numerical analysis

18 / 24



Challenge in the numerical analysis

How fast do we enter the
infeasible regions?

18 / 24



Challenge in the numerical analysis

How fast do we enter the
infeasible regions?

What are the chain
reactions of

%(^ ) B prox6<◦· · ·◦prox61(^ ).

18 / 24



Challenge in the numerical analysis

How fast do we enter the
infeasible regions?

What are the chain
reactions of

%(^ ) B prox6<◦· · ·◦prox61(^ ).

How likely are bad cases?

18 / 24



Lowering expectations...

I want to find a global
error bound.

19 / 24



Kissing unit discs

To analyse

%(^ ) B prox6< ◦ · · · ◦ prox61(^ )

we consider the graph

� = (+, �) with
+ = {1, . . . , #},
� = {(8 , 9) | if ‖-8 − -9 ‖ < 2'}.

20 / 24



Kissing unit discs

To analyse

%(^ ) B prox6< ◦ · · · ◦ prox61(^ )

we consider the graph

� = (+, �) with
+ = {1, . . . , #},
� = {(8 , 9) | if ‖-8 − -9 ‖ < 2'}.

20 / 24



Kissing unit discs

To analyse

%(^ ) B prox6< ◦ · · · ◦ prox61(^ )

we consider the graph

� = (+, �) with
+ = {1, . . . , #},
� = {(8 , 9) | if ‖-8 − -9 ‖ < 2'}.

20 / 24



Worst-case violation of constraints

21 / 24



Worst-case violation of constraints

21 / 24



Worst-case violation of constraints

21 / 24



Worst-case bounds

Lemma
Given a state ^ ∈ R2# such that

6:(^ ) ≥ 0 − � for all :

then
6:(%(^ )) ≥ 0 − �� for all :

where the constant � depends on properties of the unit disk graph.

22 / 24



Worst-case bounds

Lemma
Given a state ^ ∈ R2# such that

6:(^ ) ≥ 0 − '4 for all :∑
:

max(−6:(^ ), 0) ≥ �
∑
:

max(−6:(%(^ )), 0)

where the constant � depends on properties of the unit disk graph.

(But I have no satisfying bound for � yet.)

23 / 24



Outlook

I cannot prove consistency (yet):

‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Proving stability in this sense is possible:

‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + �̃!ℎ)‖G − H‖.

Maybe I can only get this kind of convergence: For fixed ) > 0,

‖!=ℎ(G) −Φ=ℎ(G)‖ ≤ I +"ℎ for all =, ℎ with =ℎ < ).

24 / 24



Outlook

I cannot prove consistency (yet):

‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Proving stability in this sense is possible:

‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + �̃!ℎ)‖G − H‖.

Maybe I can only get this kind of convergence: For fixed ) > 0,

‖!=ℎ(G) −Φ=ℎ(G)‖ ≤ I +"ℎ for all =, ℎ with =ℎ < ).

24 / 24



Outlook

I cannot prove consistency (yet):

‖!ℎ(G) −Φℎ(G)‖ ≤ �ℎ2.

Proving stability in this sense is possible:

‖Φℎ(G) −Φℎ(H)‖ ≤ (1 + �̃!ℎ)‖G − H‖.

Maybe I can only get this kind of convergence: For fixed ) > 0,

‖!=ℎ(G) −Φ=ℎ(G)‖ ≤ I +"ℎ for all =, ℎ with =ℎ < ).

24 / 24



References I

A. F. Filippov.
Differential Equations with Discontinuous Righthand Sides, volume 18 of Mathematics and

Its Applications.
Springer Netherlands, Dordrecht, 1988.

E. Hairer, S. P. Nørsett, and Gerhard Wanner.
Solving Ordinary Differential Equations I: Nonstiff Problems.
Number 8 in Springer Series in Computational Mathematics. Springer, Heidelberg ; London, 2nd
rev. ed edition, 2009.

Remco I. Leine and Henk Nijmeijer.
Dynamics and Bifurcations of Non-Smooth Mechanical Systems, volume 18 of Lecture Notes

in Applied and Computational Mechanics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan Jeschke,
and Matthias Müller.
Small steps in physics simulation.
In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation -
SCA ’19, pages 1–7, Los Angeles, California, 2019. ACM Press.



References II

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
Position based dynamics.
Journal of Visual Communication and Image Representation, 18(2):109–118, April 2007.

Peter Wriggers.
Computational Contact Mechanics.
Springer-Verlag, Berlin Heidelberg, second edition, 2006.



The End

Thank you for your
attention!



Alternatives

Non-smooth contact dynamics:
Solve a nonlinear optimisation problem in each time-step...
Smoothening, Repulsive potentials, Penalty method, Discrete Element method, ...
Replace non-smooth right-hand side with a smooth approximation or use alternative
model.
→Might be more physical, but also leads to very stiff systems.
Implicit methods:
Use large time-steps but a nonlinear solve which usually also predicts the collision
response.
Event time methods:
Predict time of collision and compute correct response exactly.

It is very hard to be faster and simpler than PBD, but these methods above are more rigorous
and backed by decades of experience.



Discontinious right-hand sides

Example:

¤H = −1 + �,
6(H) = H ≥ 0, � ≥ 0, H� = 0.

Consider a state H(C∗) = 0.

Then, the complementary condition implies (if ¤H exists):

0 = ¤H� + H ¤�
= (−1 + �)�.

Hence,
�(C∗) = 1.


	Motivation
	Position-based Dynamics for first order systems
	Filippov ODEs and numerical integration
	...towards error bounds for PBD
	Appendix

