Towards kinetic theory for multi-scale muscle models

Steffen Plunder

March 8, 2024

FELIX KLEIN ZENTRUM FÜR MATHEMATIK

Short self-introduction

Current research in Kyoto Institute for the Advanced Study of Human Biology (ASHBi)

Limb bud morphogenesis

Epithelial-to-mesenchymal transitions

Developmental biology

simulation

Today's talk based on:

[1] S. Plunder, B. Simeon, *The mean-field limit for particle systems with uniform full-rank constraints.* **Kinetic and Related Models.** (2023)

[2] S. Plunder, B. Simeon,

Coupled Systems of Linear Differential-Algebraic and Kinetic Equations with Application to the Mathematical Modelling of Muscle Tissue. **Conference preceding**: Progress Differential-Algebraic Equations II. (2020).

Outline

1. Multi-scale (skeletal) muscle models

2. Abstract "macro-micro" model for tissue-cross-bridge coupling

3. Convergence in mean-field limit to "**macro-meso**" model

4. Possible extensions

- *impossible for me:* adding a jump process for cross-bridge cycling
- *easier* (?)*:* **global** "**macro-macro"** model and additive noise,
- *abstract:* non-full rank constraints

Introduction

Motivation: **Multi-scale muscle models**

Question: **How can we apply kinetic theory to such a system?**

Challenges: **From a kinetic theory perspective**

$$
\dot{X}_i = F(X_i, y)
$$

$$
\dot{y} = G(X_1, \dots, X_N, y)
$$

Each attached cross-bridge is coupled to tissue deformation. **Hence, all particles interact with each other through the tissue!**

(However, *once formulated properly*, kinetic theory works out rather well.)

Multi-scale muscle models

… and their lack of perfect physical structure

Foundations: **Sliding filament theory**

Huxley's two-state mode:

- 1. Cross-bridges have two states: **attached** or **detached**.
- 2. Cross-bridge extension determines transition probabilities between states.
- 3. Muscle deformation changes cross-bridge extensions

$$
\partial_t \rho(x,t) + \operatorname{div}(\rho(x,t)v(t)) = f(x)(1 - \rho(x,t)) - g(x)\rho(x,t)
$$

Generaled force:
$$
F = -\kappa \int_{\mathbb{R}} x \rho(x, t) dx
$$

Textbooks: [2009] J. Keener and J. Sneyd [2001] J. Howard

Unilateral *tissue‒cross-bridge coupling*

Simplest model:

Suppose:

\n
$$
F_{\rm xb} = -\kappa \int_{\mathbb{R}} x \rho(x, t) \, dx
$$
\n
$$
m\ddot{y} = F_{\rm passive} + F_{\rm xb}
$$
\n
$$
\partial_t \rho + \text{div}_x(\rho \dot{y}) = 0
$$
\n
$$
\mathcal{W} = \mathcal{W}_{\rm passive} + \int_{\mathbb{R}} \frac{\kappa}{2} x^2 \, d\rho(x, t) \qquad \mathcal{T} = \frac{m}{2} ||\dot{y}||^2 + \frac{1}{2} \int_{\mathbb{R}} ||\dot{y}||^2 \, d\rho(x, t)
$$

Potential issues:

- This type of coupling ignores cross-bridge momentum.
- Ideally, the system should be conservative (no-cross bridge cycling, but it isn't exactly)... Not clearly a Lagrangian system/Euler-Lagrange equation?

Typical multi-scale models*

Quasi-incompressible hyperelasiticity (for muscle tissue)

$$
\partial_t \varphi = \text{Div}(P_{\text{passive}} + P_{\text{active}} + pG)
$$

$$
\det(\partial \varphi) = 1 + \frac{p}{\kappa}
$$

Cross-bridge model enters via active stress term: $P_{\text{active}} = -\frac{\partial W_{\text{active}}}{\partial D_{\varphi}}$ $W_{\text{active}} = \left(\kappa \int x \, d\rho(x, t)\right)$. "stress tensor in fiber direction"

some equation to approximate $\partial_t \rho + \text{div}_x(\rho v_{\text{xb}}) = 0$ (e.g. distributed moment method).

The system doesn't seem to be a direct Euler-Lagrange equation.

**Very non-comprehensive list*: [2008] M. Böl, S. Reese [2016] T. Heidlauf, O. Röhrle [2017] Herzog, W. [2022] M. H. Gfrerer; B. Simeon

The microscopic dynamics are governed by the macroscopic scale

"Unilateral" coupling:

Actin-myosin contractions accumulate to macroscopic stress.

Tissue deformation determines cross-bridge dynamics.

Focus today on **bilateral coupling** *for multi-scale model*

Disclaimer: *In terms of physical units, the concrete changes we discuss today are often insignificantly small!*

This talk is about the math of these models, with the hope get insights into the structure of the systems.

Abstract "**macro-micro**" model for **tissue‒cross-bridge** coupling

Very short recall of **differential-algebraic equations** (DAEs)

$$
\dot{x} = f(x) \qquad \text{such that} \qquad g(x) = 0
$$

can be implemented with Lagrangian multipliers via

$$
\dot{x} = f(x) + \partial_x g(x)^T \lambda,
$$

$$
g(x) = 0.
$$

Abstract "**macro-micro**" system

 $q(X_i, y) = q(X_i^{\text{init}}, y^{\text{init}}) \qquad \forall 1 \leq i \leq N.$

 $q: \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \rightarrow \mathbb{R}^{n_x}$ Constraints $\lambda_1, \ldots, \lambda_N \in \mathbb{R}^{n_x}$ Lagrangian multipliers $F_0(y) = -\nabla_y \mathcal{W}_0(y)$ Forces $F_1(X) = -\nabla_X \mathcal{W}_1(X)$ $K(X_i, X_i) = -\nabla_{X_i} \mathcal{V}(X_i - X_i)$ Interaction forces

locally macro‒micro DAE locally macro‒micro ODE locally macro‒meso mf. char. ODE locally macro‒meso mf. PDE locally macro‒macro mf. PDE global macro‒macro fu macro-macro macro-macro
mf. PDE mf. PDE

This is a classical **Lagrangian system**

$$
\mathcal{L}(y, \mathcal{X}^N, \Lambda^N) = \frac{1}{2} ||\dot{y}||^2 - \mathcal{W}_0(y) + \frac{1}{N} \sum_{i=1}^N \left(\frac{m}{2} ||\dot{X}_i||^2 - \lambda_i \left(g(X_i, y) - g(X_i^{\text{init}}, y^{\text{init}}) \right) - \mathcal{W}_1(X_i) - \frac{1}{2N} \sum_{j=1}^N \mathcal{V}(X_j - X_i) \right)
$$

 \rightarrow conservation of energy

→ scaling factors picked such that total energy remains of order one in the limit *N → ∞.*

Examples (linear constraints)

Consider
$$
g(X_i, y) = X_i - Gy = \text{const}
$$
 G

Time derivative of constraint:

$$
\Rightarrow \left[\begin{array}{c}\n\overline{\mathbf{X}}_i = G\mathbf{y} \\
\hline\n\end{array}\right]
$$

$$
G \in \mathbb{R}^{n_x \times n_y}
$$
\n
$$
F_1(X_i) + \partial_{X_i} g(X_i, y)^T \lambda_i = \underbrace{\frac{r_i \cdot x_i}{m} - \frac{r_i}{x_i}}_{j=1}
$$
\n
$$
\lambda_i = mG\ddot{y} - F_1(X_i)
$$
\n
$$
\ddot{y} = F_0(y) + \frac{1}{N} \sum_{j=1}^N G^T (mG\ddot{y} - F_1(X_j))
$$
\n
$$
(1 + mG^TG)\ddot{y} = F_0(y) - \frac{1}{N} \sum_{j=1}^N G^T F_1(X_j)
$$

$$
\Rightarrow \quad m_{\text{eff}}\ddot{y} = F_0(y) - \int_{\mathbb{R}} G^T F_1(x)\rho(x,t) \,dx = F_{\text{eff}}(y,\rho)
$$

fu

locally macro‒micro ODE

 $\rightarrow \partial_t \rho = -\text{div}_x(\rho G \dot{y})$

locally macro‒meso mf. char. ODE

 \Rightarrow

 \Rightarrow

 \Rightarrow

 \Rightarrow

locally macro‒meso mf. PDE

locally macro‒macro mf. PDE macro-macro macro-macro
mf. PDE mf. PDE

global macro‒macro

Consider linear deformations of a finite element (e.g. rotation, stretching, **shearing**, ...)

$$
g(X_i, y) = F(y(t))^{-1}X_i = \text{const} \quad (=X_i^{\text{in}})
$$

Cp. [1996] G. I. Zahalak. *Non-axial Muscle Stress and Stiffness.* Journal of Theoretical Biology

In our framework, we can directly derive resulting active stress component from given constraints.

locally macro‒micro DAE locally macro‒micro ODE locally macro‒meso mf. char. ODE locally macro‒meso mf. PDE locally macro‒macro mf. PDE global macro‒macro fu macro-macro macro-macro
mf. PDE mf. PDE

Strategy towards a mean-field description

Index reduction

On this slide:
$$
g_x \coloneqq \frac{\partial g}{\partial X}(X_i, y)
$$
 etc.

 $\Omega = -g_x^{-1} (g_{xx}[\Phi \dot{y}, \Phi \dot{y}] + 2g_{xy}[\Phi \dot{y}, \dot{y}] + g_{yy}[\dot{y}, \dot{y}])$

Elimination of multipliers (uses special structure of system!)

$$
m\ddot{X}_i = F_1 + \frac{1}{N} \sum_j K_{ij} + g_x^T \lambda_i = m\Phi[\ddot{y}] + m\Omega[\dot{y}, \dot{y}]
$$

$$
\Rightarrow \quad \lambda_i = -g_x^{-1} \left(F_1 + \frac{1}{N} \sum K_{ij} - m\Phi[\ddot{y}] - m\Omega[\dot{y}, \dot{y}] \right)
$$

The equivalent **ODE model**

$$
\ddot{y} = F_0 + \frac{1}{N} \sum_{j=1}^{N} g_y^T \lambda_j \qquad \lambda_i = -g_x^{-1} \left(F_1 + \frac{1}{N} \sum K - m \Phi[\ddot{y}] - m \Omega[\dot{y}, \dot{y}] \right)
$$

$$
\overbrace{\left(1+\frac{1}{N}\sum_{j=1}^{N}m\Phi^{T}\Phi\right)\ddot{y}}^{m_{\text{eff}}(\chi^{N},y)} = \frac{1}{N}\sum_{j=1}^{N}\left(F_{0} + \Phi^{T}\left(F_{1} - m\Omega[\dot{y},\dot{y}] + \frac{1}{N}\sum_{k=1}^{N}K\right)\right)
$$
\n
$$
\dot{X}_{i} = \Phi[\dot{y}]
$$

Each solution of the DAE model solves the ODE mode, and vice versa.

.

Dealing with the **non-constant mean-field mass**

ODE model

 $m_{\text{eff}}^N(\mathcal{X}^N, y) \ddot{y} = F_{\text{eff}}^N(\mathcal{X}^N, y, \dot{y})$ $\dot{X}_i = \Phi(X_i, y)[\dot{y}]$

"Remember": $\frac{d}{dz} \frac{f(z)}{m(z)} = \frac{f'(z)m(z) - f(z)m'(z)}{m(z)^2}$

We need that mass is bounded from below...

Assume $g: \mathbb{R}^{n_x} \times \mathbb{R}^{n_y} \to \mathbb{R}^{n_x}$ is twice continuously differentiable and **Lemma:** a , Dg , D^2g are all bounded and Lipschitz and the Jacobian is uniformly elliptic, i.e. $\inf_{v \in \mathbb{R}^{n_x}} v^T \partial_{X_i} g(X_i, y) v \geq \delta ||v||^2 \quad \forall X_i \in \mathbb{R}^{n_x}, y \in \mathbb{R}^{n_y},$

then Φ , Ω and m_{eff}^N are well-defined, bounded and Lipschitz continuous.

Full list of mathematical assumptions

 $F_0(y) = -\nabla_y \mathcal{W}_0(y),$ $F_1(X_i) = -\nabla_{X_i} \mathcal{W}_1(X_i),$ $K(X_i, X_i) = -\nabla_{X_i} \mathcal{V}(X_i - X_i)$ $F_0, F_1, K, g, Dg, D^2g \in BL$ $BL =$ "bounded and Lipschitz continuous functions" $\inf v^T g(x, y)v \ge \delta ||v||^2 \quad \forall v, x, y$

Lemma: The ODE model is well-posed and for any constant $M_v > 0$ the map

$$
(y, v, \mathcal{X}^N) \mapsto \left(1 + \frac{1}{N} \sum_{j=1}^N m \Phi^T \Phi \right)^{-1} \left(\frac{1}{N} \sum_{j=1}^N \left(F_0 + \Phi^T \left(F_1 - m \Omega[v, v] + \frac{1}{N} \sum_{k=1}^N K \right) \right) \right)
$$

is bounded and Lipschitz on $\mathbb{R}^{n_y} \times B_{M_v}^{\mathbb{R}^{n_y}}(0) \times (\mathbb{R}^{n_x})^N$.

The mean-field limit

Formal transition from **macro-micro** to **macro-meso...**

$$
m_{\text{eff}}^{N}(\mathcal{X}^{N}, y) \ddot{y} = F_{\text{eff}}^{N}(\mathcal{X}^{N}, y, \dot{y})
$$

$$
\dot{X}_{i} = \Phi(X_{i}, y)[\dot{y}]
$$

Define empirical measure as:

ODE model

$$
\mu^{\rm emp}_{\mathcal{X}^N} = \frac{1}{N}\sum_{i=1}^N \delta_{X_i}.
$$

Mean-field characteristic flow:

$$
n_{\text{eff}}(\mu^t, y) \ddot{y} = F_{\text{eff}}(\mu^t, y, \dot{y}),
$$

$$
\partial_t X^t(x^{\text{in}}) = \Phi(X^t(x^{\text{in}}), y)[\dot{y}] \quad \forall x^{\text{in}} \in \mathbb{R}^{n_x},
$$

$$
\mu^t(A) \coloneqq \mu_{\mathcal{X}_N^{\text{in}}}^{\text{emp}}((X^t)^{-1}(A)).
$$

 \sim \sim

Mean-field PDE

For particle densities $\rho(x,t) dx = d\mu^t(x)$ where $X_i \sim \mu^N(x,t) dx$ and $\mu^N \to \mu$.

The mean-field PDE is

$$
m_{\text{eff}}(y,\rho)\ddot{y} = F_{\text{eff}}(y,\dot{y},\rho)
$$

$$
\partial_t \rho = -\text{div}(\rho \Phi(x,y)[\dot{y}])
$$

with

$$
\Phi(x,y) = -(\partial_x g(x,y))^{-1} \partial_y g(x,y)
$$

$$
m_{\text{eff}} = 1 + m \int \Phi(x, y)^T \Phi(x, y) \rho(x, t) \, dx
$$

"Mean-field" mass

Macro-micro velocity map

 $F_{\text{eff}} = F_0 - \int \Phi^T \left(F_1(x) + m\Omega(x, y)[\dot{y}] + \int K(x, x')\rho(x', t) dx' \right) \rho(x, t) dx$

"Mean-field" force

Recall: nonlinear constraint example

Consider linear deformations of a finite element (e.g. rotation, stretching, **shearing**, ...)

$$
g(X_i, y) = F(y(t))^{-1}X_i = \text{const} \quad (=X_i^{\text{in}})
$$

Resulting **mean-field PDE**

$$
\partial_t \rho = -\text{div}_x(\rho F(\dot{y})F(y)^{-1}x) = -\rho \text{tr}(F(\dot{y})F(y)^{-1}) - F(\dot{y})F(y)^{-1}x \cdot (\partial_x \rho)
$$

Mathematical setup for **kinetic theory**

$$
\mathcal{P}^1(\mathbb{R}^{n_x}) = \{ \mu \text{ prob. measure on } \mathbb{R}^{n_x} \mid \int ||x|| d\mu(x) < \infty \}
$$

space of probability measures with finite first moment.

$$
W_1(\mu,\nu) = \sup_{\phi \in C(\mathbb{R}^{n_x}, \mathbb{R}^{n_x}), \text{Lip}(\phi) < 1} \int \phi(x) \, \mathrm{d}\mu(x) - \int \phi(x) \, \mathrm{d}\nu(x)
$$

Wasserstein distance (with exponent 1).

$$
\mu_{\mathcal{X}^N}^{\text{emp}} = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}
$$

empirical measure

Stability estimate [SP, Simeon] Given two solutions with initial conditions $y_i(0) = y_i^{\text{in}}, \dot{y}_i(0) = v_i^{\text{in}}$ and $\mu_i^0 = \mu_i^{\text{in}}$ then

$$
||y_1(t) - y_2(t)|| + ||\dot{y}_1(t) - \dot{y}_2(t)|| + W_1(\mu_1^t, \mu_2^t) \n\le Ce^{Lt} (||y_1^{\text{in}} - y_2^{\text{in}}|| + ||v_1^{\text{in}} - v_2^{\text{in}}|| + W_1(\mu_1^{\text{in}}, \mu_2^{\text{in}}))
$$

where the constants *C* and *L* only depend on the total energy and

$$
C_{\mu} = \max(\int 1 + ||x|| \, d\mu_1^{\text{in}}(x), \int 1 + ||x|| \, d\mu_2^{\text{in}}(x)).
$$

Convergence in mean-field limit For any sequence of microscopic initial conditions $(\mathcal{X}_k^{\text{in}})_k$ such that $W_1(\mu_{\chi_1^{\text{in}}}, \mu^{\text{in}}) \to 0$ as $k \to \infty$, then $W_1(\mu_{\chi_k(t)}^{\text{emp}}, \mu(t)) \to 0$ for all $0 \le t \le T$.

Outline of the proof (mostly whiteboard)

Ingredients

Mean-field characteristic flow

 $m_{\text{eff}}(u^t, y)$ $\ddot{u} = F_{\text{eff}}(u^t, u, \dot{u})$ $\partial_t X^t(x^{\text{in}}) = \Phi(X^t(x^{\text{in}}), y)[\dot{y}] \quad \forall x^{\text{in}} \in \mathbb{R}^{n_x},$ $\mu^t(A) \coloneqq \mu^{\text{in}}((X^t)^{-1}(A)) \quad \forall A \in \mathfrak{B}(\mathbb{R}^{n_x})$

 $z \mapsto b(z, \mu^{\text{in}})$ is Lipschitz (for limited velocities \dot{y}): $||b(z_1,\mu^{\text{in}})-b(z_2,\mu^{\text{in}})|| \leq L_z ||z_1-z_2||_Z$

 $\mu \mapsto b(z,\mu)$ is Lipschitz: $||b(z, \mu_1) - b(z, \mu_2)|| \leq L_{\mu} W_1(\mu_1, \mu_2)$

$$
\Leftrightarrow \quad \dot{z} = b(z, \mu^{\text{in}})
$$

$$
z = (y, \dot{y}, \varphi) \in \mathbb{R}^{n_y} \oplus B_{M_v}^{\mathbb{R}^{n_y}} \oplus Y =: Z_{M_v} \subset Z
$$

$$
Y = \{ \varphi \in C(\mathbb{R}^{n_x}, \mathbb{R}^{n_x}) \mid \sup_{x \in \mathbb{R}^{n_x}} \frac{\|\varphi(x)\|}{1 + \|x\|} < \infty \}
$$

Fundamental lemma: $\dot{z}_i = b(z_i, \mu_i^{\text{in}}), \quad z_i(0) = z_i^{\text{in}} \quad \text{for } i = 1, 2.$ If $||z_1^{\text{in}} - z_2^{\text{in}}||_Z \leq \rho$, $||b(z, \mu_1^{\text{in}}) - b(z, \mu_2^{\text{in}})|| \leq \varepsilon \quad \forall z \in Z_{M_n}$ $||b(z, \mu_1^{\text{in}}) - b(z', \mu_2^{\text{in}})|| \le L ||z - z'|| \quad \forall z, z' \in Z_{M_n}$ Then $||z_1(t) - z_2(t)|| \leq \varrho e^{Lt} + \frac{\varepsilon}{l} (e^{Lt} - 1).$

Small numerical validation (linear case)

Outlooks

Is there general "**Macro-macro**" system?

Mean-field PDE

 $m_{\text{eff}}(y,\rho)\ddot{y}=F_{\text{eff}}(y,\dot{y},\rho)$ $\partial_t \rho = -\mathrm{div}(\rho \, \Phi(x, y)[\dot{y}])$

$$
m(t) = \int \rho(x, t) dx
$$

$$
\nu(t) = \int x \rho(x, t) dx
$$

$$
\sigma(t) = \int x^2 \rho(x, t) dx
$$

Assuming $x^2 \rho(x,t) \Phi(x,y) \to 0$, $\text{as } |x| \to \infty$:

 $\dot{m}(t) = 0$ conservation of mass $\dot{\nu}(t) = \dot{y} \int \rho(x, t) \Phi(x, y) dx$ $\dot{\sigma}(t) \approx 2\dot{y} \int x \rho(x,t) \Phi(x,y) dx$

To close the system, one might need to use the concrete constraints...

Or approximate "**Macro-macro**" systems?

Mean-field PDE

Distributed moment method?

$$
\rho(x,t) := \gamma_t \frac{1}{\sqrt{2\sigma_t^2}} e^{-\frac{x-\mu_t}{2\sigma_t^2}}
$$

 $m_{\text{eff}}(y,\rho)\ddot{y}=F_{\text{eff}}(y,\dot{y},\rho)$ $\partial_t \rho = -\text{div}(\rho \, \Phi(x, y)[\dot{y}])$

Find ODE for moments using transport equation...

[1981] G. I. Zahalak, A distribution-moment approximation for kinetic theories of muscular contraction.

Adding spacial macroscopic model

Theory might well generalize for cases where the macroscopic system is a PDE:

 $y(t) \in H^1(\Omega_{\text{ref}}, \mathbb{R}^2)$

Formally, the current framework always supports this:

$$
Z_i=(X_i,p)\in\mathbb{R}^{n_x}\times\Omega_{\text{ref}}
$$

$$
\dot{Z}_i = \begin{pmatrix} F_1(X_i) + \partial_X g(Z_i, y) \lambda_i \\ \partial_p g(Z_i, y) \end{pmatrix} \qquad g(Z_i, y) = \begin{pmatrix} F(y(t, p_i))^{-1} X_i \\ p_i \end{pmatrix} = \text{const.}
$$

However, it is probably overly complicated...

Further directions

1. Most obvious current flaw: **Cross-bridge cycling is missing!**

Requires either two population with creation/annihilation: $X_i^{\text{attached}} \rightarrow X_i^{\text{detached}}$

Or one could modulate the constraints (but the analysis breaks):

$$
Z_i = (X_i, s), \quad g(Z_i, y) = s \cdot (Z_i - y)
$$

(I am sure the audience knows better how to integrate cross-bridge cycling.)

2. Relaxing the full rank condition: $\text{rnk}(\partial_X g(X_i, y)) < n_x$?

Thanks