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Today’s talk based on:

[1] S. Plunder, B. Simeon, 
The mean-field limit for particle systems with uniform full-rank constraints. 
Kinetic and Related Models. (2023)

[2] S. Plunder, B. Simeon, 
Coupled Systems of Linear Differential-Algebraic and Kinetic Equations 
with Application to the Mathematical Modelling of Muscle Tissue. 
Conference preceding: Progress Differential-Algebraic Equations II.  (2020).



  

Outline

1. Multi-scale (skeletal) muscle models
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2. Abstract “macro-micro” model for tissue‒cross-bridge coupling

3. Convergence in mean-field limit to “macro-meso” model

4. Possible extensions
    - impossible for me: adding a jump process for cross-bridge cycling 
    - easier (?): global “macro-macro” model and additive noise, 
    - abstract: non-full rank constraints



  

Introduction



  

Motivation: Multi-scale muscle models

nonlinear

(quasi)-incompressible

hyperelastic body

many linear springs

(at each material point)

muscle bers

(direction of contraction stress)

Question: How can we apply kinetic theory to such a system?



  

Challenges: From a kinetic theory perspective

Macroscopic component:  
Passive muscle tissue

Particles: 
Actin-myosin filaments

Each attached cross-bridge is coupled to tissue deformation.
Hence, all particles interact with each other through the tissue!

(However, once formulated properly, kinetic theory works out rather well.)



  

Multi-scale muscle models

… and their lack of perfect physical structure



  

Foundations: Sliding filament theory

Huxley’s two-state mode:

1. Cross-bridges have two states: 
attached or detached.

2. Cross-bridge extension determines transition 
   probabilities between states.

3. Muscle deformation changes cross-bridge extensions

Generated force:

Ca2+

detach

attach

blocked

Textbooks: [2009]  J. Keener and J. Sneyd  [2001] J. Howard



  

Unilateral tissue‒cross-bridge coupling

Simplest model:

- This type of coupling ignores cross-bridge momentum.

- Ideally, the system should be conservative (no-cross bridge cycling, but it isn’t exactly)… 
  Not clearly a Lagrangian system/Euler-Lagrange equation?

Potential issues:



  

nonlinear

(quasi)-incompressible

hyperelastic body

many linear springs

(at each material point)

muscle bers

(direction of contraction stress)

Typical multi-scale models*

Quasi-incompressible hyperelasiticity (for muscle tissue)

Cross-bridge model enters via active stress term:

some equation to approximate                                       (e.g. distributed moment method).

*Very non-comprehensive list: [2008] M. Böl, S. Reese [2016] T. Heidlauf, O. Röhrle 
[2017] Herzog, W. [2022] M. H. Gfrerer; B. Simeon

The system doesn’t seem to be a direct Euler-Lagrange equation.



  

Macroscopic component:  
Passive muscle tissue

Particles: 
Actin-myosin filaments

“Unilateral” coupling:

Tissue deformation 
determines cross-bridge dynamics.

The microscopic dynamics are governed by the macroscopic scale

Actin-myosin contractions 
accumulate 

to macroscopic stress.



  

Macroscopic component:  
Passive muscle tissue

Particles: 
Actin-myosin filaments

Both levels impact each other equally:

Tissue deformation 
pulls or pushes cross-bridges.

Focus today on bilateral coupling for multi-scale model

Actin-myosin contraction 
accumulates 

to macroscopic force.



  

Disclaimer: In terms of physical units, the concrete
changes we discuss today are often insignificantly small!

This talk is about the math of these models, with the 
hope get insights into the structure of the systems. 



  

Abstract “macro-micro” model for 
tissue‒cross-bridge coupling
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Very short recall of differential-algebraic equations (DAEs)

such that

can be implemented with Lagrangian multipliers via
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Abstract “macro-micro” system

Lagrangian multipliers

Forces

Interaction forces

Constraints
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→ conservation of energy

This is a classical Lagrangian system

→ scaling factors picked such that total energy remains of order one in the limit N → ∞.
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Examples (linear constraints)

Consider
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Time derivative of 
constraint:



  

Examples (nonlinear 
constraint)

Consider linear deformations of a finite element (e.g. rotation, stretching, shearing, …)
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Cp. [1996] G. I. Zahalak. Non-axial Muscle Stress and Stiffness. Journal of Theoretical Biology

In our framework, we can directly derive resulting active stress component from given constraints.



  

Strategy towards a mean-field description

DAE model

ODE 
model

Index reduction
+ multiplier elimination

Mean-field
limit

Mean-field PDAE system

Mean-field PDE system
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Index reduction
On this slide:

Elimination of multipliers (uses special structure of system!) 

etc.

Index-3 DAE Index-2 DAE Index-1 DAE

Assume:

is always invertible



  

The equivalent ODE model

.
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Each solution of the DAE model solves the ODE mode, and vice versa.



  

ODE model

Dealing with the non-constant mean-field mass

“Remember”: 

Lemma:

We need that mass is bounded from
below...
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Assume                                      is twice continuously differentiable and

are all bounded and Lipschitz and the Jacobian is uniformly elliptic, i.e.

then                         are well-defined, bounded and Lipschitz continuous.
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Full list of mathematical assumptions

Lemma: The ODE model is well-posed and for any constant               the map

is bounded and Lipschitz on                                             .



  

The mean-field limit



  

Formal transition from macro-micro to macro-meso...
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Define empirical measure as:

Mean-field characteristic flow: 

ODE model



  

Mean-field PDE

The mean-field PDE is

with

Macro‒micro velocity map “Mean-field” mass

“Mean-field” force

For particle densities and .where
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Recall: nonlinear constraint example

Consider linear deformations of a finite element (e.g. rotation, stretching, shearing, …)
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Resulting mean-field PDE



  

Mathematical setup for kinetic theory

space of probability measures with finite first moment.

Wasserstein distance (with exponent 1).

empirical measure



  

Stability estimate [SP, Simeon]

where the constants C and L only depend on the total energy and

Given two solutions

with initial conditions then

Convergence in mean-field limit For any sequence of microscopic initial conditions

thensuch that
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Outline of the proof (mostly whiteboard)
Ingredients

Mean-field characteristic flow 

Fundamental lemma:

If

Then



  

Small numerical validation (linear case)
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Outlooks
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Is there general “Macro-macro” system?

Mean-field PDE
Assuming

To close the system, one might need
to use the concrete constraints…
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Or approximate “Macro-macro” systems?

Mean-field PDE
Distributed moment 

method?

[1981] G. I. Zahalak, A distribution-moment approximation 
for kinetic theories of muscular contraction.

Find ODE for moments using 
transport equation…



  

Adding spacial macroscopic model
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Theory might well generalize for cases where the macroscopic system is a PDE:

Formally, the current framework always supports this:

However, it is probably overly complicated…



  

Further directions

1. Most obvious current flaw: Cross-bridge cycling is missing!

Requires either two population with creation/annihilation:

Or one could modulate the constraints (but the analysis breaks):

(I am sure the audience knows better how to integrate cross-bridge cycling.)

2. Relaxing the full rank condition:



  

Thanks


