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Preface 3

Preface

The fools who write the textbooks of advanced mathematics –
and they are mostly clever fools – seldom take the trouble to
show you how easy the easy calculations are. On the contrary,
they seem to desire to impress you with their tremendous
cleverness by going about it in the most difficult way.

Silvanus Thompson, [Tho98, Prolog]

In the spirit of the quote, I must admit that I wrote this master’s thesis
to “impress others with my tremendous cleverness by going about it in the
most difficult way”. In some sense, one could say that it is the main purpose
of a master’s thesis to show (off) knowledge and competence. But without
doubt, I do not present the easiest way to model and simulate muscles. I
try to present the most elegant way to look at the equations. Explaining
the most elegant way as easy as possible is always a challenge.

The first topic of this thesis is classical field theory in Chapter 1, which I first
discovered on page 275 in the book “Mathematical foundations of Elasticity”
by Jerrold E. Marsden and Thomas J. R. Hughes [MH83, section 5.4].
Classical field theory can handle electromagnetism, general relativity and
continuum mechanics with ease and still features highlights like Noether’s
theorem and more. However, at least to my knowledge, it is not included in
the usual education for mathematicians with interest in physics. The rather
detailed introduction in this thesis is more a mathematical hobby than a
reasonable effort. Nevertheless, we will use the Lagrangian formulation of
hyperelasticity extensively in Chapter 3.

As a complement to all this abstract nonsense, Chapter 2 is about the phys-
iology of skeletal muscles and completely non-mathematical in the first half.
Physiology is still a field with many open questions and uncertainties. For
me, physiology is far more difficult than mathematics. Most symmetries and
nice structures are gone, but in some way order arises from molecular chaos.
After a gallery of muscle images, we also introduce mathematical models for
the cellular contraction mechanism. In the last section of the chapter we
also discuss common multi-scale methods for skeletal muscle tissue.

In Chapter 3, we forget about all nasty non-conservative, stochastic parts
of the muscle contraction mechanism and derive a simple form of a common
skeletal muscle model as a constrained Lagrangian system. In this way, we
see which assumptions are hidden behind common multi-scale models for
muscle contraction in more detail. From this perspective, the cellular model
is just a variation of the Liouville equation.



4 Contents

Finally, we discuss some numerical methods for skeletal multi-scale models in
Chapter 4. We use the finite element framework FEniCS for our simulations.
The static case is already well covered by classical theory, but still requires
a combination of many different numerical methods. The dynamic setting
carries many numerical pitfalls and we were not able to overcome all of them.
The final simulation in Chapter 4 is a time dependent simulation of the
nonlinear partial differential equations of a quasi-incompressible hyperelastic
material which is coupled to a collection of transport equations. This might
sound quite impressive, but the reader should be warned that we did not
perform a careful convergence analysis for the complete model.

Therefore, I cannot stress enough, that all simulations in this thesis are
nothing more than simulations of Donald Duck’s arm muscles, which are
fictional muscles and not obligated to any laws of physics or physiology.



Notations

In some equations, we use gray color to put non-essential details into the
background, for example

3∑
i,j=1

d

dXi

∂L
∂Diϕj

[wj ].

The upper super-index from ϕj denotes the j-th coordinate of ϕ. If the
super-index denotes a power, it should be clear from the context. As usual,
super-indices are used for covariant coordinates and sub-indices represent
contravariant parts. We do not use the Einstein summation convention.

The expression above can also be read without the gray objects and then
represents the coordinate-free version of the same term, i.e.

d

dX

∂L
∂Dϕ

[ω].

We will often neglect the evaluation at certain point,

Differential Geometry. We use bold letters to denote elements of linear
spaces, such as tangential or co-tangential vectors or tensors. An exception
are variations η or ξ.

M,N smooth manifolds
TpM tangent space of M at p ∈M
TM =

∐
p∈M TpM tangent bundle of M

Df : TM→ TN differential of a smooth function f
d Cartan derivative (or exterior derivative)
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6 Notations

Continuum Mechanics. Following [MH83], we use upper-case variables
for objects in material space and lower-case variables denote spatial objects.

B manifold of (fixed) material points
S manifold for spatial points
ϕ : B → S configuration
X ∈ B material point
x = ϕ(X) spatial point
F = Tϕ : TB → TS deformation gradient

C = F TF deformation tensor
(or right Cauchy-Green tensor)

L Lagrangian density
W stored strain energy density

P =
∂W
∂F

first Piola-Kirchhoff stress tensor

S = F−TP second Piola-Kirchhoff stress tensor
σ spatial stress tensor
τ traction
b external body force field



Chapter 1

Classical Field Theory,
Hyperelasticity and
Constraints

This chapter introduces the Euler-Lagrange equations of classical fields, dis-
cusses hyperelasticity from an field theoretical perspective and finally ex-
tends these equations to include constraints. In this way we can model
incompressibility and couple a micro-scale model (for the contraction of
skeletal muscle cells) with a macro-scale model for hyperelastic solids.

7



8 1. Classical Field Theory, Hyperelasticity and Constraints

A complete introduction to elasticity is of course not possible, we only want
to focus on specific mathematical aspects of hyperelasticity. Many theorems
from classical mechanics are also true for classical fields. This perspective
yields a direct – but abstract – approach to hyperelasticity. For example,
we can apply Noether’s theorems to rediscover the conservation laws of
hyperelasticity as consequences of symmetry. From a numerical perspective,
the Euler-Lagrange equations and their discrete counterparts are the starting
point for the development of variational integrators. Another feature of
classical field theory is that time is “just another” space dimension.

For a proper introduction to elasticity, we refer to [MH83], [TN04] or
[Cia94].

We follow [CH17, chapter 5] and [MH83, section 5.4], but most Theorems
are presented in a less general and simplified version. For sake of simplicity,
the theorems and proofs are stated in Cartesian coordinates, but we use the
language from differential geometry.

To summarize the essential points of this chapter:

• A field ϕ maps a material point X and a time t onto the current spatial
position x = ϕ(X, t).

• Hamilton’s principle asserts that physical fields are stationary points
of the action functional

S(ϕ) =

∫∫
L(ϕ, ϕ̇,Dϕ) dX dt.

• The corresponding Euler-Lagrange equation is

∂L
∂ϕ
− d

dt

∂L
∂ϕ̇
−
∑
i

d

dXi

∂L
∂Diϕ

= 0.

• The weak formulation of the Euler-Lagrange equation is∫∫
∂L
∂ϕ

[η] +
∂L
∂Dϕ

[Dη]− ρϕ̈ · η dX dt = 0,

which has to hold for all variations η.

My contributions: This chapter contains only classical results. Nonetheless,
there is not a lot of literature, where hyperelasticity is derived as a spe-
cial case of classical field theory. In particular, the treatment of Neumann
boundary conditions by application of the Lagrange d’Alembert principle
was not found in any of the used literature, but this is due to my limited
knowledge of the relevant literature in classical field theory. (The approach
in [MH83] is not compatible with the more general theory in [CH17]. On
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the other hand [CH17] does not treat non-conservative boundary conditions
for fields at all.)

1. A Quick Recall of the Euler-Lagrange Equations in
Classical Mechanics

To fix the notation, we shortly recall the principle idea of Lagrangian me-
chanics.

The kinematics of a physical system can be represented by a finite dimen-
sional manifold M, which is called the configuration space. The dynamics
of the system are determined by a Lagrangian function L = Ekin − Epot,
which is the difference between kinetic and potential energy.

Hamilton’s principle asserts that physical trajectories

q : [0, T ]→M
are stationary points of the action functional

S(q) =

∫ T

0
L(q(t), q̇(t)) dt.

Under certain assumptions, stationary points are exactly the solutions of
the Euler-Lagrange equations

∂L

∂q
(q, q̇)− d

dt

∂L

∂q̇
(q, q̇) = 0.

In many cases, these equations boil down to Newton’s second law. Hamil-
ton’s principle is a useful starting point to derive equations of motions for
many different physical systems.

If we do not allow an infinite dimensional configuration spaceM, this frame-
work is restricted to systems with finitely many degrees of freedom, which ex-
cludes important systems from continuum mechanics, e.g. fluids and solids.

2. The Euler-Lagrange Equations for Classical Fields

A field in the context of classical field theory is a smooth map

ϕ : D → S
from a source manifold D (possibly with boundary) to a target manifold S.

For simplicity, we will always assume S = Rm.

The principle idea of classical field theory is to replace trajectories by fields.
Intuitively, we might think of trajectories as the motion of finitely many
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particles, whereas fields can represent the dynamics of an infinite collection
of particles.

Figure 1. The abstract space D = B×[0, T ] on the left hand side and of
the current deformations of the body ϕ(B, t) in the spatial space S = R2

at different times t on the right.

Remark 1.1 (Space-Time). The source manifold can have the form

D = B × [0, T ] ,

where B denotes a compact manifold of space-like coordinates (possibly with
boundary). Therefore, the definition of fields includes already the dynamic
case as well. For relativistic theories, this factorization is not always possible.
But within this thesis, we will always assume the source manifold to be either
B or B × [0, T ].

Remark 1.2 (Interpretation of fields in elasticity). In elasticity, a point X ∈
B is called a material point and the corresponding value of the deformation
field x = ϕ(X) or x = ϕ(X, t) is called a spatial point. The material space
does encode the geometry of the solid, but it is per se a purely abstract
space. Spatial coordinates describe the world how we perceive it, and thus
a spatial point described the actual positions of the solid’s atoms. This
situations is visualized in Figure 1.

Following the classical path, our next step is the definition of the La-
grangian. In classical mechanics, the Lagrangian is defined on the tangent
space TM. For classical field theory, the appropriate domain is a jet bundle



2. The Euler-Lagrange Equations for Classical Fields 11

[EEMnLRR96]. In simplified terms, we want to build a space where two
functions are equal, if their first k derivatives are equal. We are mostly in-
terested in the case k = 1, although the case k = 2 has one small application
in this thesis as well.

Remark 1.3 (Working definition of jets). It is intuitive to think of the k-jet
of a field ϕ at point p as the k-order Taylor polynomial. Thus, jkp (ϕ) carries
the data

jkp (ϕ) ≈
(
ϕ(p),Dϕ(p), . . . ,Dkϕ(p)

)
.

A function L : Jetk(Rn,Rm) → R is a function which depends only on the
first k derivatives of ϕ.

For a Lagrangian L(ϕ,Dϕ), the concept of jets allows us to define terms like

∂L
∂ϕ

and
∂L
∂Dϕ

,

where ϕ and Dϕ are considered to be independent during the differentiation.
This is easy in coordinates, we might just write L(ϕ,F ) and denote the
latter derivative as ∂L

∂F . But this construction does not generalize well to
the geometric setting.

For mathematical joy, we therefore want to introduce a better notion, which
does generalize to the geometric setting.

Definition 1.4 (k-jets in Euclidean space, [IL03]). We say two functions
f, g ∈ C∞(Rn,Rm) have contact of order k at a point p ∈ Rn, if their
first k derivatives are all equal at the point p. Let ∼p,k be the associated
equivalence relation.

We define the k-order jet space at p ∈ Rn as the quotient vector space

Jetkp(Rn,Rm) := C∞(Rn,Rm)
/
∼p,k .

The k-order jet fiber-bundle is defined as the disjoint union (with canonical
smooth structure)

Jetk(Rn,Rm) :=
∐
p∈Rn

Jetkp(Rn,Rm).

The equivalence class of f ∈ C∞(Rn,Rm) at p is called the k-jet of f at p

jkp (f) ∈ Jetkp(Rn,Rm)

and it defines a smooth section

jk(f) : Rn → Jetk(Rn,Rm).
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Remark 1.5 (Nonlinear source manifold). We can replace Rn by a smooth
manifold D in Definition 1.4. Two functions f, g : D → Rm have a contact
of order k at point p ∈ D if there exists a local chart h : U → Rn at p such
that the associated chart representations f ◦h−1 and g ◦h−1 have a contact
of order k at h(p).

By virtue of the chain rule, this property does not depend on the choice of
the chart h.

Hamilton’s Principle. Hamilton’s principle states that true fields are sta-
tionary points of the action functional

S(ϕ) =

∫
D
L(jk(ϕ)) dV,

where dV is fixed volume form on D and the Lagrangian (density) L is a
smooth function on the jet bundle Jetk(D,S) over D [CH17].

In hypereleasticity, the Lagrangian is of the form

L = Ekin − Epot,

where the energy densities will depend on derivatives of the field ϕ in time
and space direction.

Dirichlet boundary and initial conditions. For space-time formula-
tions, initial conditions are just Dirichlet boundary conditions which are
imposed at the boundary t = 0 of the source manifold D.

We can rewrite conditions like

ϕ(X, t) = ϕD(X) for all (X, t) ∈ ∂DB × [0, T ]

or

ϕ(X, 0) = ϕinit(X) for all X ∈ B,
into the combined formulation

ϕ = ϕ̃D on ∂DD.

Since every field is supposed to satisfy the boundary conditions we impose,
we will restrict Hamilton’s principle to the set C of feasible fields

C = {ϕ : D → S | ϕ is a smooth diffeomorphism and satisfies(1.1)

the Dirichlet boundary conditions.}
We will call the set C the configuration space.1

1This definition only coincides with [MH83, section 5.1] if D = B, but not in the dynamic case.
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Figure 2. Dirichlet boundary conditions in space-time are a combina-
tion of initial conditions (purple on the left plane) and usual spatial
Dirichlet boundary conditions (red). Time varying Dirichlet boundary
conditions are also included in the current formulation.

We take for granted that the field space C is an infinite dimensional Banach-
submanifold of C∞(D → S) [MH83, section 4.2], this might exclude strange
or non-smooth boundary and initial conditions.

First order conditions for stationary points. We will use the letter Z
to denote points of the source manifold D.

Applying the first order condition for stationary points from Theorem A.4
yields

dS(ϕ) = 0 ∈ T ∗ϕC,
where T ∗ϕC denotes the dual space of the tangent space TϕC.
The next theorem enlightens the relation of tangent vectors η ∈ TϕC and
smooth variations of ϕ. Using this relation, we can translate the condition

dS(ϕ)[η] = 0, for all η ∈ TϕC
into the the weak formulation of the Euler-Lagrange equation.

To prepare for the next theorem, we recall the definition of the bundle
projection πS for the tangent bundle TS. This projection maps a tangent
vector onto its base point. Since in our case S = Rm, this map is simply

πS : TS → S : (x, v) 7→ x.
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Lemma 1.6 (Infinitesimal variations, cp. [MR11, Prop. 8.1.2]). The tan-
gent space TϕC is the set of smooth maps η : D → TS such that

(i) πS ◦ η = ϕ and

(ii) η(Z) = 0 for all Z ∈ ∂DD.

Sketch of the proof. Following the interpretation of tangent vectors as
equivalence class of curves with first order contact at a common point, like
in Remark B.1, then each tangent vector ηC ∈ TϕC has a representing curve

γ : (−δ, δ)→ C : ε 7→ γ(ε),

such that the base point is ϕ, i.e.

γ(0) = ϕ

and its equivalence class is [γ] = ηC ∈ TϕC.
For a fixed point Z ∈ D, we can define a curve in the target manifold, given
by

γ(ε;Z) := γ(ε)(Z).

The equivalence class of this curve in S defines a tangent vector

η(Z) := [γ(·;Z)] ∈ Tϕ(Z)S.
For (i), we just have to calculate the base point

η(0) = γ(0;Z) = ϕ(Z).

The second statement (ii) holds true, since the fields in C are prescribed
at the Dirichlet boundaries. Therefore, the curves γ(·;Z) are constant and
thus their derivative with respect to ε is zero. �

Theorem 1.7 (Weak formulation of the first order condition for stationary
points). Let L be a smooth function on Jet1(D,Rm) and assume the source
manifold D to be a compact manifold. A smooth field ϕ : D → Rm is a
stationary point of the corresponding action functional S : C → R if and
only if

0 =

∫
D

∂L
∂ϕ

(j1(ϕ))[η] +
∂L
∂Dϕ

(j1(ϕ))[Dη] dV = dS(ϕ)[η](1.2)

holds for all smooth variations η ∈ TϕC.

Sketch of the proof. 1. In order to apply Theorem A.4, we need to show
Gatêaux-differentiability of

S : C → R : ϕ 7→
∫
D
L(j1(ϕ)) dV.
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This is not too hard to prove, since we can write the action functional as a
composition of smooth maps.

2. For the computation of dS we start with the differential of the 1-jet j1(ϕ).

We do not want to go into details here, but the map j1 evaluated at Z ∈ D
is more or less

kZ(ϕ) ≈ (ϕ(Z),Dϕ(Z)),

which is clearly a linear map in ϕ. Thus, the differential – which is the best
linear approximation – is just the map itself, i.e.

Dj1(ϕ)[η] = j1(η),

where we use Lemma 1.6 to convert η ∈ TC into a map D → TS and identify
Tϕ(Z)S ∼= Rm, which yields a map

η : D → Rm.

With these domains, j1(η) is well defined.

This implies

D(L ◦ j1)(ϕ)[η] = DL(j1(ϕ))
[
Dj1(ϕ)[η]

]
= DL(j1(ϕ))[j1(η)]

=
∂L
∂ϕ

[η] +
∂L
∂Dϕ

[Dη].(1.3)

By the linearity of the integral, we get

dS(ϕ)[η] =

∫
D

∂L
∂ϕ

[η] +
∂L
∂Dϕ

[Dη] dV.

�

We remark that a physicist would rewrite Equation (1.3) as

δL =
∂L
∂ϕ

δϕ+
∂L
∂Dϕ

δDϕ.

Definition 1.8 (Momentum). If the source manifold is of the form D =
B × [0, T ], then the momentum is given by

p :=
∂L
∂ϕ̇

.

Remark 1.9 (Stress, [MH83, chapter 5, Definition 4.4]). Using notations
from elasticity, we define the first Piola-Kirchhoff stress tensor as

P := − ∂L
∂Dϕ

.
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From a field theoretical perspective, it is natural to use the letter ‘p’ to
denote momentum and stress, since they both denote derivatives of L with
respect to changes of the field in space respectively in time.

Remark 1.10 (Sources of Nonlinearities). We can already identify the prin-
ciple reasons for nonlinear terms in the weak formulation [Wri08, chapter
2]. To get a linear problem, we always need to ensure that the space of fields
C is a linear vector space and the gradient of the action potential, i.e. dS(ϕ),
is also linear with respect to the field ϕ.

Before we derive the strong form of the Euler-Lagrange equations, two def-
initions are necessary to handle the natural boundary conditions.

Definition 1.11 (Normal fields at the boundary). To treat boundary con-
ditions, we have to consider D as a Riemannian manifold with boundary,
which allows us to define a covector field on the boundary

N : ∂D → T ∗D
∣∣
∂D ,

such that a vector field V : ∂D → TD is tangential to D, if and only if
N(Z)[V (Z)] = 0.

Definition 1.12 (Contraction). For a bilinear form

T : V ∗ ×W → R

and a covector

N : V ∗ ×W

we define the contraction as

T ·N : W → R : w 7→ T [N ,w].

The name contraction is motivated by the equivalent definition via indices,
where the sum over one pair of indices is taken

(T ·N)j =
∑
i

T ijNi.

For tensor fields on manifolds, the contraction is defined pointwise.
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Theorem 1.13 (Euler-Lagrange equations for fields, cp. [CH17, Theorem
5.2]). Let L be a smooth function on Jet1(D,Rm), let D ⊆ Rn be a compact
Riemannian manifold (possibly with boundary) and consider the correspond-
ing action functional S : C → R. A smooth map ϕ : D → Rm is a critical
point of the action under smooth variations if and only if it has finite action
and is the solution of the following system of partial differential equations

0 =
∂L
∂ϕ
−
∑
i

d

dZi

(
∂L
∂Diϕ

)
,(1.4)

with Dirichlet boundary conditions

ϕ = ϕD on ∂DD(1.5)

and natural boundary conditions

∂L
∂Dϕ

·N = 0 on ∂ND := ∂D \ ∂DD.(1.6)

Remark 1.14 (Time-Space factorization). If we use Z = (X, t) and consider
D to be the derivative with respect to X, we get the equations

0 =
∂L
∂ϕ
− d

dt

∂L
∂ϕ̇
−
∑
i

d

dXi

(
∂L
∂Diϕ

)
.

Sketch of the proof. We recall that an upper index like ϕi denotes the
i-th component of ϕ.

1. Let ϕ be a stationary point of S. In particular we have ϕ ∈ C which
implies the Dirichlet boundary condition Equation (1.5).

We start with the weak formulation from Theorem 1.7,

0 =

∫
D

∂L
∂ϕ

[η] +
∑
i,j

∂L
∂Diϕj

[Diη
j ] dV,

which has to hold for all variations η ∈ TC.

We apply Stoke’s Theorem to get

0 =

∫
D

∂L
∂ϕ

[η]−
∑
i,j

d

dZi
∂L

∂Diϕj
[ηj ] dV +

∫
∂D

∑
i,j

∂L
∂Diϕj

[Ni ⊗ ηj ] dA,

where N denotes a field of outward pointing normal vectors.

We skip details here. The map N ⊗ η : TD|∂ND → TS : V 7→N [V ] · η can

be seen as a two-point tensor, just like the (deformation) gradient Dϕ. In
this way, ∂L

∂Dϕ [N ⊗ η] is well defined.
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By Lemma 1.6, all variations vanish on the boundary ∂DD, but the varia-
tions vary freely on ∂ND.

Applying the Riesz-isomorphism and after separating η, we arrive at

0 =

∫
D

∂L
∂ϕ
−
∑
i

d

dZi
∂L
∂Diϕ

 · η dV +

∫
∂ND

(
∂L
∂Dϕ

·N
)
· η dA.(1.7)

As usual, a special choice of the variation η proves Equation (1.4) and Equa-
tion (1.6).

2. The prove the other direction, we may repeat the same arguments in
reverse. Of course this is only possible since ϕ is assumed to be smooth! �

Remark 1.15 (Regularity, Existence and Uniqueness). Both the weak form
and the strong form can be ill-posed, especially if we require too much regu-
larity. The choice of appropriate function spaces depends on the Lagrangian
L and is not trivial.

Remark 1.16 (Second order Euler-Lagrange equation, cp. [CH17, Theo-
rem 5.2]). If the Lagrangian also depends on second-order derivatives of ϕ,
the strong formulation of the Euler-Lagrange equations is

0 =
∂L
∂ϕ
−
∑
i

d

dZi

(
∂L
∂Diϕ

)
+
∑
i,j

d

dZi
d

dZj

(
∂L

∂Di Djϕ

)
.(1.8)

There are no new ideas needed to derive these equations, but the boundary
conditions are more difficult, since Stoke’s Theorem has to be used twice.

3. Non-conservative Euler-Lagrange Equations

External forces and boundary conditions break the conservation of energy
for time-invariant Lagrangians, which implies that we must expand or ad-
just Hamilton’s variational principle if we want to model external influences.
In theory, these external influences also originate from other physical sys-
tems, but we do not have enough information nor the resources to include
them into our model. Therefore, it is no option to include all effects of the
environment exactly.

3.1. The Lagrange-d’Alembert principle. If we included all external
effects into one system, the global variational principle would state

dS(ϕ) + dSenv(ϕ,ϕenv) = 0,
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where Senv represents the action of an environmental system in configuration
ϕenv.

For both forces and boundary conditions, we model the perturbation of the
variational equation by some co-vectorfield

F : C → T ∗C,
which approximates

F (ϕ) ≈ dS(ϕ,ϕenv).

The resulting variational equation is called Lagrange-d’Alembert principle
and reads

dS(ϕ) + F (ϕ) = 0.(1.9)

3.2. Forces. Forces are already co-tangential vectors in classical mechan-
ics, although this detail is often omitted. Hence it is canonical to model a
force field as a co-vector field

b : D → T ∗S.(1.10)

The force b(Z) ∈ T ∗ϕ(X)S acts at the spatial position ϕ(X) but it does only
depend on the material point X ∈ D. Forces like this are called dead loads,
but other choices are also possible!

To apply the Lagrange-d’Alembert principle from Equation (1.9), we define
Fb : C → T ∗C to be constant with respect to ϕ ∈ C. The co-vector Fb(ϕ) ∈
T ∗C is defined as

Fb(ϕ) : TC → R : η 7→
∫
D
b(Z)[η(Z)] dV (Z).

This term is well-defined by Lemma 1.6.

The corresponding Euler-Lagrange equations are simple, the external forces
are just added to the internal forces ∂L

∂ϕ , hence

∂L
∂ϕ

+ b− d

dt

∂L
∂ϕ̇
−
∑
i

d

dXi

∂L
∂Diϕ

= 0.

3.3. Natural boundary conditions. The variations only vanish on those
parts of the boundary ∂D where we impose Dirichlet boundary conditions.
This leads to the natural boundary condition on the rest of the boundary

∂L
∂Dϕ

·N = 0 on ∂NB.(1.11)

This is a condition to the stress tensor P (from Remark 1.9) in normal
direction N (Definition 1.11).
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We can prescribe the stress to be non-zero as well by defining a field

τ : D → T ∗S(1.12)

Analogously to the introduction of forces, we define

Fτ (ϕ) : TC → R : η 7→
∫
∂ND

τ(Z)[η(Z)] dA(Z).

Again, this term does not depend on the configuration ϕ.

The corresponding variational principle

dS(ϕ)[η] + Fτ [η] = 0 for all η ∈ TϕC
leads to a modification of Equation (1.7) and to the term

0 =

∫
∂ND

(
∂L
∂Dϕ

·N + τ

)
· η dA for all η ∈ TϕC.

Therefore, the Euler-Lagrange equations stay the same, but the natural
constraint (1.6) must be replaced by

− ∂L
∂Dϕ

·N = P ·N = τ on ∂ND.(1.13)

Remark 1.17 (Traction force potential). In contrast to [MH83], we use
Hamilton’s principle for fields as starting point. If we used the Euler-
Lagrange equations for the Lagrangian L =

∫
B LdX to derive the equations

for fields, it would be possible to add a term
∫
∂NB−Vτ dA to the Lagrangian

to get the same variational equation with τ = −DVτ . A similar approach is
possible to include body forces.

4. Equations of Hyperelasticity

Without further ado, we can apply the general theory to derive the equations
of hyperelasticity. We will also introduce the usual notations from elasticity,
based on [MH83].

Model 1.18 (Three dimensional hyperelastic solids). Let B ⊂ R3 be a
compact set of material points, let T > 0 denote some (irrelevant) terminal
time.

A motion is described by a field

ϕ : B × [0, T ]→ R3,

where x = ϕ(X, t) denotes the spatial position of a material point X ∈ B at
time t ∈ [0, T ]. We call ϕ(·, t) the deformation, ϕ̇(·, t) is the velocity and

F := Dϕ : TB → TD
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is called the deformation gradient, where D denotes only derivatives with
respect to X and all dependencies on t are omitted.

The Lagrangian is given by

L(j1(ϕ)) = ρref‖ϕ̇‖22 − ρrefW(Dϕ)

and we have to provide the initial data described in Table 1.

Material properties
ρref(X) mass density with respect to material points
W(Dϕ) stored energy density or strain energy

Initial deformation and velocity of the solid
ϕinit(X) initial deformation
vinit(X) initial velocity

Dirichlet boundary conditions
ϕD(X, t) Dirichlet boundary conditions on ∂DB

The traction
τ (X, t) Neumann boundary conditions on ∂NB

External body forces as in Equation 1.10
b(X, t) Body forces or (dead) loads.

Table 1. Initial data for Model 1.18.

Then, according to the Lagrange-d’Alembert’s principle, the equations of
motion are given by

dS(ϕ) + Fb + Fτ = 0.(1.14)

Remark 1.19 (Initial conditions and non-abstract material points). In
practice, it is convenient to choose B ⊂ R3 such that the stress free de-
formation is given as

ϕinit = id : B ↪→ R3.

Moreover, it is common to describe the deformation by a displacement map
u : B → R3, which is related to the deformation ϕ via

ϕ = id + u.

The displacement u = 0 then corresponds to the stress free deformation.

Now we simply collect all previous work, namely Theorem 1.13, Equa-
tion (1.11) and Equation (1.13). We recall the definition of the first Piola-
Kirchhoff stress tensor from Remark 1.9

P = − ∂L
∂Dϕ

.
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Remark 1.20 (Dynamic Equations for Hyperelastic Solids). In the setting
of Model 1.18, the equations of motion are given by

0 = b− ϕ̈−DIV(P ),

with initial conditions

ϕ = ϕinit and ϕ̇ = vinit at t = 0,

Dirichlet boundary conditions

ϕ = ϕD on ∂DB
and traction boundary conditions

P ·N = τ on ∂NB.

Remark 1.21 (Static Equations for Hyperelastic Solids). In the setting of
Model 1.18, but with the source manifold defined as

D = B,
the static equations of Hyperelastictiy are

0 = b−DIV(P ),

with Dirichlet boundary conditions

ϕ = ϕD on ∂DB
and traction boundary conditions

P ·N = τ on ∂NB.

4.1. Material laws. The Lagrangian

L = ρref ‖ϕ̇‖22 − ρW(Dϕ)

includes all information we know about the material. The choice of the
strain energy is the crucial step to model realistic solids.

We shortly discuss one common material law. For an overview, we refer to
[RAS16, section 3.3].

The principle of material frame indifference asserts that the strain energy of
homogeneous and isotropic2 materials does only depend on the characteristic
polynomial of the right Cauchy-Green deformation tensor

C := DϕT Dϕ : TB → TB.

The transpose is defined by the relation

g(v,DϕW ) = G(DϕTv,W ),

2The material laws are invariant to rotations of the material coordinates.



4. Equations of Hyperelasticity 23

Dϕ DϕT

C

B B

S

Figure 3. A unit circle in TXB (left) is mapped onto an ellipse in TxS
(middle) under the deformation gradient Dϕ. Without comparison to
the configuration at rest, it is difficult to extract any information. But
mapping it “back” into the material tangent space (right) shows how
the material is stretched.

where G and g denote the Riemanniam metrics on the material space B and
the spatial space S.

The advantage of the right Cauchy-Green deformation tensor is illustrated
in Figure 3.

Lemma 1.22 (Invariants of a symmetric linear map in three dimensions.
[MH83, Proposition 3.5.9]). Let C ∈ L(R3,R3) be a symmetric linear map.
We define the invariants of C by

I1(C) = trC, I2(C) =
1

2

(
(trC)2 − tr(C2)

)
and I3(C) = detC.

The invariants are related to the characteristic polynomial via

det(λI −C) = λ3 − I1λ
2 + I2λ

1 − I3.

In terms of eigenvalues of C we have

I1 = λ1 + λ2 + λ3, I2 = λ1λ2 + λ1λ3 + λ2λ3 and I3 = λ1λ2λ3.

Remark 1.23 (Mooney-Rivlin material). For two parameters c10 and c01

the strain energy is given by

WM-R = c10(I1 − 3) + c01(I2 − 3).
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This material law models the behaviour of rubber-like material.

4.2. Well-posedness. Like already noted, the theory of existence and
uniqueness is non-trivial. We have not considered questions of this kind
within the thesis, therefore we committed the crime of just assuming (or
hoping) to stay within the area of well-posedness for our problems.

Remark 1.24 (John Ball’s existence theory). In the conservative case dS =
0, it would be natural to require S, respectively the strain energy density
W, to be convex, but this is not physically reasonable. John Ball’s existence
theory applies for the larger class of polyconvex functions, which covers
the Mooney-Rivlin material law as well. But additional assumptions on
the domain, its topology and boundary conditions are not trivial [MH83,
Chapter 6].

Remark 1.25 (Bifurcations in hyperelasticity). In general we can not ex-
pect the existence of a unique solution for arbitrary boundary conditions.
We shortly state an intuitive counterexample in Figure 4. Viewed as a dy-
namical system, many singular bifurcation points can exist. The theory for
existence and uniqueness is out of the scope of this thesis, we just note that
it is a complicated subject with many counterexamples for already simple
systems [MH83, Chapter 6].

Figure 4. A force acting on the top of a bar will likely bend it into a
non-unique direction.

4.3. Conservation Laws in Hyperelasticity. Emmy Noether’s celebrated
theorems uncovered the fundamental relation between symmetries and con-
served quantities in physics.

We only state Noether’s Theorem in its specialised form for hyperelasticity,
taken from [MH83, chapter 5, example 5.6].
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Theorem 1.26 (Noether’s Theorem for spatial symmetries [MH83, chapter
5, example 5.6]). Let

ψs : R3 → R3

be a flow, generated by a vector field w : R3 → TR3.
If the Lagrangian L is time-independent and if the pushforward of j1(ϕ)
under φs leaves the Lagrangian invariant

L((φs)∗(j
1(ϕ))) = L(j1(ϕ)),

then Noether’s theorem states that any solution ϕ of the equations of motion
satisfies the conservation law

d

dt

(
∂L
∂ϕ̇
· w
)

+
3∑

i,j=1

d

dXi

(
∂L

∂Diϕj
· wj

)
= 0.

For this (strong) formulation of the conservation laws, at least ϕ ∈ C2(B ×
[0, T ]→ R3) is required as well.

We neglect the computations and just state the conservation laws and their
corresponding symmetries.

Remark 1.27 (Conservation of Linear Momentum). If the Lagrangian does
not depend on point values of the configuration ϕ, invariance with respect
to translations in space

x 7→ x+ sv

yields the balance of (linear) momentum. If we combine the conservation
laws for translations in all possible directions in space, we recover the Euler-
Lagrange equations

d

dt

∂L
∂ϕ̇

+ DIV

(
∂L
∂Dϕ

)
= 0.

Notice that conservation of momentum holds only if no forces are present,
i.e. ∂L

∂ϕ = 0.

Remark 1.28 (Conservation of Angular Momentum). Similarly, rotational
symmetry yields the conservation of angular momentum.

Remark 1.29 (Material symmetries). In classical field theories, the mate-
rial space is also equipped with a geometric structure. Therefore another
class of symmetries also lead to conservation laws. These symmetries require
a more general version of Noether’s Theorem than stated in Theorem 1.26.

If the strain energy is isotropic, i.e. invariant with respect to all rotations in
material coordinates

Rω : B → B : X 7→ RωX,
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then the second Piola-Kirchhoff stress tensor

S := F−1 ◦ P : T ∗B → TB
is symmetric, which means that the associated field of bilinear maps

F−1(X) ◦ P (X) : T ∗XB × T ∗XB → R
are symmetric at each material point X ∈ B.

Remark 1.30 (Conservation of Energy). As usual, the material symmetry
of time invariance

t 7→ t+ s

corresponds to the conservation of energy

∂E
∂t

+ DIV

(
ϕ̇
∂L
∂Dϕ

)
= 0,

with E denoting the total energy density

E =
∂L
∂ϕ̇

· ϕ̇︸ ︷︷ ︸
2Ekin

−L = Ekin + Epot.

Remark 1.31 (Conservation of Mass). In Model 1.18, the mass density
is time-invariant and depends only on material points X ∈ B, therefore
conservation of mass is trivial.

5. Example: One Dimensional Hyperelasticity

To animate the theory, we discuss a model for one dimensional ropes. In
Chapter 3, we use a similar approach to model a seemingly infinite collection
of tiny springs.

Example 1.32 (A chain of springs). To start simple, we will consider an
example from classical mechanics. We model a chain of n+ 1 point masses,
with a spring attached between each two consecutive point masses. In the
next remark, we derive a model for a continuous rope by considering the
limit n→∞.

We use the following notations for physical quantities of this system.

• mtotal : total mass of the chain of springs.

• Ltotal : total length of the chain.

• h = 1
n : length of a single spring at rest.

• msingle = 1
n+1 ·mtotal ≈ h ·mtotal : single point mass.

• A: cross-section of the springs.
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• E: Young’s elastic modulus for the springs.

• κ = E·A
h : stiffness of the springs.

If we ignore collisions, the kinematics of the system are described by the
configuration space (R3)n+1. Using trajectories from classical mechanics, a
curve q : [0, T ]→ (R3)n+1 describes the n+ 1 positions of the point masses.
We use qi ∈ R3 to denote the position of the i-th point mass.

The potential energy is given by

Epot =
n∑
i=1

E ·A
2h

(∥∥qi+1 − qi
∥∥

2
− h
)2
.

Together with the kinetic energy

Ekin =

n+1∑
i=1

1

2
h ·mtotal ‖q̇i‖22 ,

the dynamics are fully determined by the Euler-Lagrange equation, which
are given by

h ·mtotalq̈i = κ(qi+1 − 2qi + qi−1)− 2κ · h

 ri+ 1
2∥∥∥ri+ 1

2

∥∥∥
2

−
ri− 1

2∥∥∥ri− 1
2

∥∥∥
2

 .

For a large number of particles n, the dimension of the configuration tends
to infinity. To overcome this issue, we can use a field to describe the mo-
tion. Therefore, we identify each mass point as an element of Bchain =
{0, 1

n , . . . ,
n
n}. The map

ϕ : Bchain × [0, T ]→ R3

assigns to each material point Xk = 1
k ∈ Dchain and each time t ∈ [0, T ] the

corresponding spatial point in space, i.e.

ϕ(Xk, t) = qk(t) ∈ R3.

Example 1.33 (A continuous rope). For a large number of springs, we
might want to use an infinite collection of point masses to represent the
chain of springs as a continuous rope, for example we can take Drope =
[0, 1]× [0, T ] .

The interpretation of a field ϕ : Drope → R3 remains the same! The field
assigns a spatial point x = ϕ(X, t) to each pair of a material point and a
time (X, t) ∈ Drope.
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Figure 5. A field ϕ relates times and material point to the current
spatial points in space. (The springs are only visualised as spiral springs,
in our model we use Young’s modulus and hence allow only uniaxial

deformation.

Figure 6. For ropes, the source manifold Drope carries a non-trivial
geometry. A field separates the data which do not change in time, i.e.
the time domain and the source manifold from the spatial points, which
can move within the target manifold.

We notice a humble difference between fields and trajectories: In the con-
tinuous chase, trajectories are maps into a infinite dimensional space, i.e.
q : [0, T ]→ C∞([0, 1]→ R3), whereas fields are still maps between two finite
dimensional spaces.

Example 1.34 (The Lagrangian for a continuous rope). We continue Ex-
ample 1.32 and consider the limit n→∞.
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We recall the definition of the Lagrangian of a spring and insert h = 1
n to

get

Lchain =
n+1∑
k=0

h · 1

2
mtotal

∥∥ϕ̇(Xk, t)
∥∥2

2

−
n∑
k=1

h · A · E
2

(∥∥ϕ(X + h, t)− ϕ(X, t)
∥∥

2
− h

h

)2

.

For the limit n→∞, we use
∑
h ≈

∫
dX and the definition of the derivative

to get the Lagrangian

Lrope =

∫ 1

0

mtotal

2

∥∥ϕ̇(X, t)
∥∥2

2
dX −

∫ 1

0

A · E
2

(∥∥DXϕ(X, t)
∥∥

2
− 1
)2

dX.

The distance between two mass points in the chain is replaced by the de-
rivative with respect to X. This is typical for continuous models and the
derivative is usually called the deformation gradient.

We prefer to work with a Lagrangian density with respect to time and space,
hence we set

Lrope =
mdensity

2
‖ϕ̇‖22 −

A · E
2

(
‖DXϕ‖2 − 1

)2
= Ekin − Epot.

Exercise 1.35 (Classical mechanics is not a special case of field theory).
Why is a chain of springs (Example 1.33) not an example for classical field
theory? 3

6. Constraints in Classical Field Theory

In this section, we state the Euler-Lagrange equation of first kind for classical
field theory with constraints.

The constraint is represented as

g(j1(ϕ)) = 0.

Previous results can be reused, if we extend the target manifold by

φ : D → S × R : Z 7→ (ϕ(Z), p(Z)).

3In the classical work of Walter Noll and Clifford Truesdell, the principle of local action was
introduced to forbid non-local interactions in solids [TN04, section 26]. To answer the question,
it might help to understand in which sense a principle of local action is included in classical field

theory.
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Here p represents the Lagrange multiplier corresponding to the constraint
g = 0.

We define the augmented Lagrangian as

L̃(j1(φ)) = L(j1(ϕ))− p · g(j1(ϕ)).

The approach of Lagrange multipliers is well-know and based on the follow-
ing theorem.

Theorem 1.36 (Lagrange Multiplier Theorem for Linear Spaces, [MR11,
Theorem 8.3.1]). Let V be a Banach space and S : V → R be a smooth
function and g : V → R a smooth constraint function with regular value 0.
The constraint manifold C = g−1({0}) is a submanifold of V .
We define

S̃ : V × R∗ → R : (ϕ, p) 7→ S(ϕ)− p[g(ϕ)].

The following are equivalent conditions on x0 ∈ C:

(i) ϕ is a critical point of S|C and

(ii) there is a dual vector p ∈ R∗ such that (ϕ, p) is a critical point of S̃.

A more general version of this theorem also applies if the space of feasible
fields C is a manifold [MR11, Theorem 8.3.2]. This covers the case when D
or S are manifolds.

The Euler-Lagrange equations (Theorem 1.13) for L̃ are

∂L̃
∂φ
− d

dt

∂L̃
∂φ̇
−
∑
i

d

dXi

∂L̃
∂Diφ

= 0.

Since the new configuration space factorizes into C̃ = C ×C∞(D,R), we can
split the derivatives into two parts

∂L̃
∂φ

=

(
∂L̃
∂ϕ

,
∂L̃
∂p

)
∈ T ∗C̃.

Hence, the Euler-Lagrange equations represent a system of two partial dif-
ferential equations, which have to be satisfied by ϕ and p.

Inserting the definition of L̃ = L − pg yields the equations
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0 =
∂L
∂ϕ

+ p
∂g

∂ϕ
− d

dt

(
∂L
∂ϕ̇
− p ∂g

∂ϕ̇

)
(1.15a)

−
∑
i

d

dXi

(
∂L
∂Diϕ

− p ∂g

∂Diϕ

)
,

0 =
∂L̃
∂p

= g(j1(ϕ)).(1.15b)

Remark 1.37 (Incompressibility). For an incompressible material, the de-
formation field must preserve volume at each point in time, which yields a
condition on the deformation gradient Dϕ = F , for example

g(j1(ϕ)) := det(Dϕ)− 1 = 0.

We only have to calculate the term ∂g
∂Dϕ , which is the only difference to the

unconstrained Euler-Lagrange equations in the momentum equation.

The determinant depends in general on the Riemannian metrics of the ma-
terial space and the spatial space. Here we stay in the simplified cartesian
case B ⊆ S = R3. We also denote F = Dϕ.

Jacobi’s formula for matrices A ∈ GL(n) reads

D det(A)[δA] = det(A) tr(A−1δA), for δA ∈ TAGL(n).

If we use the inner product (A,B) 7→ tr(ATB), we can identify

P constr := p
∂g

∂Dϕ
= det(F )pIF−T .(1.16)

For a more intuitive interpretation, we transform these terms into spatial
coordinates. The Piola transformation [Wri08, section 3.2.4] relates the
spatial Cauchy stress tensor σ : T ∗S → TS to the first Piola-Kirchhoff
stress tensor P . The relation is given by

P = det(F )σF−T .

Therefore, stress induced by the incompressibility constraint has a simple
form in the spatial picture, from

σconstr = pI.

This stress represents a hydraulic stress induced by a pressure p. It is im-
portant to notice, that the total hydraulic pressure in the material is given
by

phydr = tr(σ) = p+
1

3
tr(σunconstr).
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In this way, the Lagrange multiplier can be seen as a pressure field, but it
is only one term of the hydraulic pressure in the material.

Model 1.38 (Equations of incompressible hyperelastic motion.). If we com-
bine Equation (1.15) and Equation (1.16), again using the notations P =

− ∂L
∂Dϕ , b = ∂L

∂ϕ and G = ∂g
∂Dϕ , we get

b− ϕ̈+ Div(P + pG) = 0,

g(F ) = 0.

In the spatial picture, the balance of linear momentum transforms into a
equation which is similar to the equations of incompressible fluid flow

ü = b+ div(σ − pI)

= b+ div(σ)− grad(p).

Remark 1.39 (Quasi incompressible material). A formal modification of
the Lagrangian allows the material to compress, but it punishes large val-
ues of the Lagrange multiplier p with an additional quadratic term in the
Lagrangian.

This relaxation is very popular and allows to create numerically feasible
models for incompressible materials.

The augmented Lagrangian for this relaxation is defined by

L̃ = Lhyperelastic − p(det(Dϕ)− 1) +
p2

2κ
.

Here κ denotes the Bulk modulus, which indicates how much the material
resists against compression.

Since p enters the Lagrangian in a quadratic way, it is no longer a Lagrange
multiplier. But we can still use the Euler-Lagrange equations to derive a
system of partial differential equations in strong form.

By adding this term, Equation (1.15a) stays unchanged and only the incom-
pressibility condition in Equation (1.15b) changes to

0 = (det(Dϕ)− 1)− p

κ

(
=
∂L̃
∂p

)
.(1.17)

Formally, we arrive at an incompressible material for κ→∞. This limit can
be made rigorous and is used to prove existence theorems [MH83, Chapter
6, Box 5.3].
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For small κ, large violation of the incompressibility constraint only induces
small changes in pressure. Therefore the induced stress is also small and the
material behaves like an unconstrained hyperelastic material.

Like in the incompressible case, the additional equation has no time deriva-
tives and acts like an algebraic constraint. The new term p

κ reduces the
differential index of the partial differential-algebraic system, since one dif-
ferentiation with respect to time of Equation (1.17) yields

ṗ = κ
d

dt
(det(Dϕ)) = κdiv(ϕ̇) · det(Dϕ),

where we used [MH83, Chapter 1, Proposition 5.4] for the second equality.
The lower case operator div represents the divergence with respect to the
spatial metric g.

If we use this equation, the value of ṗ is not implicit anymore. Hence the
system has differential index 1.





Chapter 2

Physiology and Models
of Skeletal Muscle
Tissue

. . . everybody [in my group] is expected to be interested in the
scientific problem, not the mathematical problem per se.

James Sneyd, 2017

In this chapter, we describe in non-mathematical terms the basic mechanism
of muscle contraction and introduce the sliding filament theory (sometimes
also called Huxley’s model).

We have to apologize to the experts in biology, since we mostly stick to
brutally simplified vocabulary, in the hope that these are easier to grasp
for mathematicians. Therefore we do not talk about A-lines, Z-lines and
S1-myomeres, but use longer and less precise terms.

General introductions to the physiology of muscle contraction are given in
many standart textbooks on molecular biology, for example [AJL+14] and
[GH06].

An overview for skeletal muscles with an emphasis on the historic develop-
ment of muscle contraction models can be found in [Her00].

Mathematical models for skeletal muscles are described in [KS09]. An ex-
cellent introduction to the mechanics of motor proteins is given in [How01].

35
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My contributions: This chapter is based on the cited literature and pub-
lications. My contributions are limited to the choice of the mathematical
notations.

A short summary. In a few words, skeletal muscle contraction is initiated
by an electric signal from the nervous system, which causes calcium ions
to enter the muscle fiber cells. In each muscle cell, actin- and myosin-
filaments are aligned parallel to each other and – if not blocked by the
absence of calcium – many small bridges between the actin- and myosin-
filaments connect and pull the filaments alongside each other together. As a
result the muscle cell shortens. After each pull, the bridges disconnect again
and may bind again at another binding site.

This cycle is called the cross-bridge cycle.

Molecular motors. The conversion of chemical energy into mechanical
energy is the essential function of molecular motors. In our body, most
mechanical work is caused by the hydrolysis of adeonsin triphosphate (ATP),
an energy rich molecule.

According to the laws of thermodynamics, the conversion of chemical en-
ergy into mechanical energy is connected to an increase of entropy, which
indicates already, that all molecular motors and in particular skeletal muscle
contraction is a non-conservative process.

1. Physiology of Skeletal Muscles

In this section we describe the composition of skeletal muscles at different
scales and explain molecular actin-myosin motors work.

1.1. The three types of muscles tissue. Before we drift into details of
skeletal muscles, we shortly want to point out their difference from the two
other muscles types, which are the cardiac muscles of the heart and smooth
muscles.

Cardiac muscles. Every single heart beat is the result of a complex con-
traction of cardiac muscle tissue. This specialized muscle has a complicated
geometry, which gives rise to complex calcium waves and non-trivial propa-
gation patterns of electric signals.
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Figure 1. Muscles cells from a heart muscle. These cells are locally
straightened but form together a complex network.

Smooth muscles. In contrast to straightened muscles, the contraction of
smooth muscle cells is not directed. This causes the complete cell to shrink,
which is useful to contract tubes or volumes. For example the arteries and
veins of the circulatory system are narrowed by the contraction of the sur-
rounding smooth muscles tissue. The iris and the lens of a human eye are
also altered by the contraction of smooth muscles.

Figure 2. Smooth muscle cells do not just contract in a single direction.
Instead, each cell will decrease its volume, which causes the complete
muscle to shrink.

Another big difference to skeletal muscles is the ability of smooth muscles
to remain in a contracted state, without consuming energy. The cross-
bridges of skeletal muscles always detach after each pulling stroke, therefore
a permanent contraction can only be achieved by a constant rate of pulling
stokes. In contrast, the cross-bridges in smooth muscle cells stay attached
after each stroke and hence, no energy, no repeated strokes are required to
sustain a contraction.
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Skeletal muscles. These muscle cells are also often called straightened muscle
cells, since their most characteristic feature are long muscle fibers, which are
all straightened into one primary direction.

Figure 3. The fibers of skeletal muscles are parallel aligned. The purple
dots are the cells nuclei.

1.2. An exploration of skeletal muscles on different scales. We want
to explore some cross-sectional images of a skeletal muscle to see the different
scales of skeletal muscles in a real example.

Images in this section are taken from the virtual histology laboratory1, with
kind permission from Todd Clark Brelje. We recommend a visit the virtual
histology laboratory, where an interactive viewer allows to zoom into high
resolution muscle images. The explanations in this section are taken from
the virtual histology laboratory as well.

We start with Figure 4, where an overview of the whole muscle is given, and
continue into smaller scales, until we reach the level of single sarcomeres in
Figure 12. In this thesis, we will focus on the modeling of sarcomeres, which
are the contractible units in skeletal muscle cells.

1 histologyguide.com

histologyguide.com
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Figure 5

Figure 4. Cross-section of a skeletal muscle. (MHS 262 Skeletal Muscle)

fascicle of muscle fibersfascicle of muscle fibers

perimysium

Figure 5. Perimysium, a connective tissue, surrounds each fascicle of
the muscle fibers.
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Endomysium
Nuclei

Muscle cell

Figure 6. Individual muscle fibers are separated by endomysium. The
area in between also contains many nuclei and blood supplying capil-
laries at the corner of muscle fibers. (MHS 262 Skeletal Muscle)

fast-twitch

slow-twitch

Figure 7. There are two main types of muscle fibers: slow-twitch and
fast-twitch muscle fibers. The few fast-twitch muscle fibers in this image
are thinner and darker than the many slow-twitch fibers. (MHS 262
Skeletal Muscle)
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Figure 8. The curly structure in the center is a muscle spindle. These
cells sensor the muscle contraction. (MHS 262 Skeletal Muscle)

Figure 9. Each muscle cell contains a bundle of myofibrils. These
myofibrils consist out of parallely aligned actin filaments and myosin
filaments. (MH 055a Skeletal Muscle)
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Figure 10. A single muscle fiber from a longitudinal view. The small
sarcomeres are already slightly indicated at this scale by striation around
the muscle fiber.

Figure 11. The smallest sub-units of skeletal muscle cells are sarcom-
eres. The myosin filaments are the black lines in the A band. The actin
filaments are thinner and start from the Z line.
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actin filament

myosin filamentmyosin head

binding-site

Figure 12. An idealized sketch of a single myosin filament from a sar-
comere like in Figure 11.
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1.3. The cross-bridge cycle. We use a common breakdown of the process
into four steps, this approach can be found in [KS09, Section 15.1]. The
cross-bridge cycle is visualized in Figure 13.

• Chucking the myosin heads: Unbound myosin heads can bind and
hydrolyze an ATP molecule, which causes a configurational change of
the myosin head. This step might be compared with the chucking of a
spring, since energy is used to cause this configurational state. In this
state the relaxation requires to pass an energy barrier, which causes
the molecule to stay in a local equilibrium configuration.

• Attachment: Chucked myosin heads can bind to unblocked binding
sites on the actin filament. This process is quite fast, since it allows
the myosin head to change into a preferable configuration, where it is
bound to the actin filament. We will usually call an attached myosin
head a cross-bridge, since it connects the myosin filament and the actin
filament.

• Power stroke: The attachment also causes a configurational change
of the myosin head. Now, a relaxed configuration is reachable without
an energy barrier in between, which induces a pulling force between
the myosin filament and the actin filament.

• Clean-up: The mechanical work is done but the most time consuming
step of the cross-bridge cycle is not done yet. The remaining ADP
molecule and other left overs have to unbind from the myosin head.
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Figure 13. A very, very simplified sketch of the cross-bridge cycle.
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2. Control of the Cross-Bridge Cycle

The cross-bridge cycle in skeletal muscle cells only takes place, if unblocked
binding sites exist.

If no calcium ions are present next to the actin filaments, then the binding
sites will be blocked by a troponin complex, which prevents chucked myosin
heads to attach. This mechanism is used to control the number of cross-
bridge cycles.

Compartment 2.1 (Sarcoplasma). The fluid inside muscle cells is called
Sarcoplasma. The actin filaments and myosin filaments are surrounded by
the sarcoplasma.

Compartment 2.2 (Sarcoplasmic reticulum). The sarcoplasmic reticulum
stores calcium ions. In general, the calcium ion concentration inside the
sarcoplasma is kept very low, such that a small increase of calcium diffuses
rapidly throughout the cell. This allows calcium ions to act as a so called
second messenger, which is used to deliver signals inside the cell to their
recipient.

• Electrical signaling: Nerves and so called T-tubes allow controlled
propagation of electrical signals throughout the muscle cell. Not every
single muscle fiber is controlled individually, instead the nerves are
attached to fiber bundles, which are controlled simultaneously.

• Release of calcium ions: If an electrical signal reaches a muscle
cell, a complex cellular mechanism causes the release of calcium ion
channels from the sarcoplasmic reticulum (SR) into the sarcoplasma,
i.e. into the fluid compartment, which surrounds in particular the actin
filaments.
The spread of calcium ions is driven by diffusion, which is a fast process,
if and only if the concentration in the sarcoplasma was initially very
low.

• Unblocking: Two calcium ions can bind to one blocking troponin
complex, which causes a change in the configuration of the troponin
complex such that the binding sites are able to connect with chucked
myosin heads. In this way the calcium ions initiate the cross-bridge
cycling.

• Clean-up: Again, a crucial step is the return into the initial state.
This step is highly energy consuming, since all calcium ions need to be
pumped back into the sarcoplasmic reticulum.
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Figure 14. The cross-bridge cycle only takes place, if the calcium ions
diffuse into the sarcoplasma and bind with the troponin complex at the
binding-sites.
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Remark 2.3 (The role of calcium dynamics in skeletal muscle cells). Ini-
tially, this thesis was intended to focus around the role of calcium waves
in skeletal muscle cells. But since nature does not follow a mathematicians
wishes, wave propagation in skeletal muscle cells seems to be less essential
than in other types of muscles [DFKS16, Section 7.3]. The propagation of
calcium in skeletal muscles is mostly restricted to one dimensional muscle
fibers. If the calcium ions are buffered inside the sarcoplasmic reticulum,
they bind with other molecules, which prevents more complicated and fast
dynamics of buffered calcium.

Remark 2.4 (Control in other muscle cells). The control mechanisms in
cardiac and smooth muscles differ a lot from the described control in skeletal
muscle cells.

Cardiac muscles have a complex geometry, in which electrical signals and
calcium ions propagate in complex patterns. This is essential for the function
of our heart muscles. But like in skeletal muscle cells, the release of calcium
ions unblocks the cross-bridge cycling.

In smooth muscle cells, the cross-bridge cycle takes place during the absence
of calcium. But cross-bridges also stay attached by default after the power
stroke.
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3. Mathematical Models for Muscle Contraction

3.1. Hill’s Model for Muscle Contraction. One of the first quantitative
models for muscle contraction was due to Archibald Hill, who proposed to
model a skeletal muscle as a combination of an contractible and a elastic
element.

The dynamics of a muscle are determined by a force-velocity relation, which
predicts the generated force of a muscle cell depending on the current con-
traction and the contraction velocity of the muscle.

The model fails to predict the reaction of a muscle to fast spontaneous
contraction and other extreme events, but due to its simplicity, it is still very
popular and useful. We will not go into details here and directly describe a
more advanced model, which is based on physiological principles.

3.2. Huxley’s Two State Model for Cross-Bridges. In this section we
derive a model for the density of bound and unbound myosin heads. Before
we derive the dynamics for these densities, we collect a few questions to
answer why we are interested in the densities of attached cross-bridges. In
fact, we are mostly interested in the moments of the cross-bridge density.

The first moments of the cross-bridge density.

Remark 2.5 (How strong is the generated force?). If a myosin head is
bound to an actin binding site, we assume it to act like a linear spring,
which generates a force given by Hook’s law

Fsingle = −κ · (q − qeq).

For simplicity we choose the equilibrium to be qeq := 0.

Let ρxb(q) denotes the density of bound myosin heads with displacement q. 2

We can compute the total force by summing up all individual contributions

Ftotal = −κ
∫
R
q · ρxb(q) dq = −κ ·Q1.

It is important to realize, that this quantity only depends on the first mo-
ment Q1 of the density ρxb.

Remark 2.6 (How stiff are the connected filaments?). If we change the
relative position of the filaments instantaneously by a certain length h, the

2“xb” is a shortcut for cross-bridge.
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displacement of each cross-bridge will also change by this quantity. We can
compute the change of the total force as

Fnew = −κ
∫
R

(q + h) · ρxb(q) dq = Fold − hqκ
∫
R
ρxb(q) dq

= Fold − κhQ0.

Thus, the stiffness is given by

Tension = κQ0.

Again, the quantity of interest is just the zero-th moment Q0 of the cross-
bridge density ρxb.

Remark 2.7 (Energy of the cross-bridges). The total energy of a single
myosin head is

Esingle =
m

2
q̇2 +

1

2
κq2,

where m denotes the mass of a myosin head.

Since all cross-bridges are attached to the same actin filament, their veloci-
ties are all equal. We denote the common velocity by vf . Summation yields
the total energy for a collection of cross-bridges

Etotal =
1

2

∫
R

(mv2
f + κq2)ρxb(q) dq.

The mass of a single myosin head m is negligibly small.

Time Dynamics of cross-bridge Densities.

We model the transition of an unbound myosin head at displacement q to
a bound cross-bridge to occur with probability f(q). The reverse transition
probability is denoted by g(q). In other words, the transition behaves like a
chemical reaction

U
f(q)

�
g(q)

B.

In fact, the transition probabilities can be derived by thermodynamic prin-
ciple [MZ91].

Remark 2.8 (Modeling of calcium control). The attachment of myosin
heads to actin binding-sites is only possible in the presence of calcium ions.

To model this effect, it is common to use an activation function r([Ca2+]),
which depends on the current calcium concentration. The modified transi-
tion probabilities are then given by

U
r([Ca2+])f(q)

�
r([Ca2+])g(q)

B.
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Remark 2.9 (Overlapping actin filaments). For strong contraction of the
sarcomeres, the actin filaments might overlap, which reduces the number
of usable binding-sites. Conversely, a strong extension reduces the overlap
of the actin filament with the myosin filaments, and therefore the number
of reachable binding-sites also reduces. Hence, it is reasonable to let the
transition probabilities also depend on the fiber stretch qf , i.e.

U
r([Ca2+])f(q; qf )

�
r([Ca2+])g(q; qf )

B.

Remark 2.10 (Lagrangian vs. Eulerian viewpoint). For a given sliding
velocity vf the displacements of all myosin heads will be transported in the
direction of vf .

If we use the coordinates

q̃ := qf + q,

a fixed coordinate q̃ would correspond to the trajectory of an individual
myosin head, which is the Lagrangian viewpoint.

But we will continue to use q as a primary variable, which corresponds to
the Eulerian description.

In particular, we have to use the material derivative

Dρxb

Dt
=
∂ρxb

∂t
+ vf

∂ρxb

∂q
,

when we model the attachment and detachment of myosin heads as a reac-
tion equation.

Model 2.11 (Two State Cross-Bridge Model). For given filament sliding
velocity vf , length qf and transition probabilities as in Remark 2.9, the
densities of unbound myosin heads ρxb(q, t) and bound cross-bridges ρxb(q, t)
are governed by the transport reaction equation

Dρxb

Dt
=
∂ρxb

∂t
+ vf ·

∂ρxb

∂q
= f · (1− ρxb)− g · ρxb.(2.1)

The calcium dependency is included in the transition probability functions
f and g.

An important and nontrivial challenge is to find appropriate transition prob-
abilities. Since the model is just a rough approximation of the real cross-
bridge cycles, we can not assume to derive these probabilities directly from
biochemical principles.
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Figure 15. Simplified transition probabilities. The q-axis is nondimen-
sional, such that q = 1 corresponds to the maximal extension of a myosin
head.

Remark 2.12 (Simple transition probabilities). Within this thesis, we will
only consider transition probailities of the form

f(q) =


0, for q < 0,

f1 · q, for 0 < q < 1,

0, for 1 < q,

(2.2)

and

q(q) =

{
g2, for q < 0,

g1 · q, for q > 0.
(2.3)

Realistic values can be found in [Zah81, page 98], which are plotted in
Figure 16.

Remark 2.13 (Energy consumption). In Remark 2.7 we have already com-
puted the total energy of all cross-bridges. We see that the creation of a
cross-bridge increases the energy of the system and detachment of a cross-
bridge decreases the energy of the system.

Example 2.14 (Quasi-steady states). For a simple form of the transition
probabilities, it is simple to compute the quasi-steady states of the two state
model.
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Figure 16. Transition probability function, taken from [Zah81, page 98].

Quasi-steady states are solutions of the two state model, with constant den-
sity function, i.e.

∂ρxb

∂t
= 0.

Nonetheless, the cross-bridge cycling does not stop in a quasi-steady state.

For a constant contraction velocity v < 0 and transition probabilities as in
Remark 2.12, it is easy to compute the exact solution

ρxb(q) =


F1(1− e−

φ
v )e

q
2
G2

φ
v , for q < 0,

F1

(
1− e

φ
v

(q2−1)
)
, for 0 < q < 1,

0, else,

where we used the variables φ = h
2 (f1 + g1), F1 = f1

f1+g1
and G2 = g2

f1+g2

[KS09].

Despite the many parameters, this solution is still intuitive, since it captures
that attached cross-bridges will get transported in the contraction direction,
which is the reason why the peak of the distribution is at q = 0. For
negative displacement, the quasi-steady state density of cross-bridges decays
exponentially, which is no surprise, since the detach probability function is
a constant g(q) = g2 for negative extensions q < 0.
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Figure 17. A typical quasi-steady state during a contraction of the
muscle. Cross-bridges will still attach, shorten and detach, but without
changing the distribution of cross-bridge extensions.

4. A Popular Method: The Distributed Moment
Approximation

In the context of macro-scale simulations, the numerical solution of the
transport equation Equation (2.1) in each point X ∈ B of the skeletal muscle
would be computational demanding. A method developed in [Zah81] avoids
this drawback and allows a reduction to a system of ODE.

The key motivation behind this approximation is the idea, that we are not
interested in the actual densities, but just their moments.

We may assume that all densities are of the simple form of a scaled normal
distribution with moments Q0(t), Q1(t) and Q2(t). For simplicity we define
σ2(t) = Q2(t) − Q2

1(t), moreover we only consider the bound density for a
moment, which is now given by

ρxb(q, t) = Q0(t) · 1√
2πσ2(t)

· exp

(
−(q −Q1(t))2

2σ2(t)

)
.

We now let the moments depend on time and aim at finding their time
dynamics. Inserting the scaled normal distribution into the two state model
(Model 2.11) yields equations for the moments.
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Model 2.15 (Distributed Moment Method). The first three moments Q =
(Q0, Q1, Q2)T of a normal distributed density µb are approximated as solu-
tions of the differential equation

Q̇0 = b0 − F0(Q),

Q̇1 = b1 − F1(Q)− vfQ0,

Q̇2 = b2 − F2(Q)− 2vfQ1.

The additional functions bi and Fi are defined for as

bk =

∫
qkf(q) dq,

Fk =

∫
qk
(
f(q)− g(q)

)
ρxb(q) dq.

It is important to notice, that the exact evaluation of Fk and bk is possible,
if f and g are piecewise polynomial functions, since then the result is a com-
bination of polynomials and moments of the normal distribution. Explicit
expressions can be found in the appendix of [Zah81].

Remark 2.16 (Non consistency of the distributed moment method). If
the transition probabilities f, g do not vanish, then the exact solutions will
not stay normal distributed. An important case for not normal distributed
solutions of the two state model are the quasi-steady states.

The inconsistency was already known during the development of this method,
but its efficiency and the good conservative properties of moment methods
are the reason, why this method is still very popular and useful. The dy-
namics which are generated by the model capture many essential features
of the exact solutions. And since the parameters and the choice of the tran-
sition probabilities are already a rough approximation, it is reasonable to
choose parameters, just in a way to optimize the solutions of the distributed
moment method to be close to the real data.

Vice versa, parameters in publications using the distributed moment method
are maybe not optimal parameters for a consistently approximated two state
model.

In Figure 18 and Figure 19, the difference between the distributed moment
method and a consistent upwind discretisation of the two state model are
plotted. The transition probabilities are exactly as in Figure 16. The upwind
solution converges against the exact solution and time integration for both
models was done using the solver lsoda from the FORTRAN library odepack
with sufficiently small time steps.
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Figure 18. Simulation results for the first three moments of the two
state model with constant extension velocity vf = 100. Since the cross-
bridges are transported again the contraction direction, the resulting
force is larger, until an equilibrium of cross-bridge attachment and de-
tachment is obtained.
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Figure 19. For a contraction with velocity v = −100, the quasi-steady
state is reached faster. The equilibrium points of the distributed moment
method and the exact system differ, since the quasi-steady states are not
normal distributed.

Remark 2.17 (Many states models). As usual in biological modelling, the
reality is far more complex than computational models. Myosin heads are
complex molecules and their dynamics is highly nonlinear. Besides biochem-
ical models, also more complex cross-bridge models have been developed.
These models extend the two state model by adding additional states like
half strained or fully strained attached myosin heads or different states of
the troponin complex [HKR+16], [HR14], [Zah97].

Remark 2.18 (Non-axial models). A typical characteristic of continuum
mechanics of solids is the possibility of shear deformations. These defor-
mations break various assumed symmetries of the cross-bridge model. An
example is shown in Figure 20.

With a view on multi-scale models, an interesting extension to non-axial
models has also been developed, for example in [Zah96]. The idea is to
consider also shear deformations and their effect on filament arrangement,



5. Hyperelastic Models for Skeletal Muscle Tissue 57

Figure 20. Shear deformations break the mirror symmetry of the paral-
lel filaments. Shearing causes different changes of attached myosin head
extensions, therefore a single contraction velocity has to be replaced by
more complicated terms of the deformation rate tensor.

this leads to a more complicated expression for the material derivative. A
simple example is sketched in Figure 20. The authors conclude, that non-
contractable proteins may play a significant role in muscle mechanics by
equilibrating unsymmetrical active stresses [Zah96].

Remark 2.19 (Maximal shortening velocity). For some velocity the amount
of newly attached myosin heads with positive displacement x > 0 equals
the amount of those with negative displacement x < 0, hence no force is
generated. This effect is seen in practice [KS09, Section 15.3].

5. Hyperelastic Models for Skeletal Muscle Tissue

The principle idea in most models, is a split of the stress into active and
passive terms, i.e.

S = Sactive + Spassive.

Here it is useful to work with the second Piola-Kirchhoff stress tensor S(C) =
F−TP (C) : T ∗B → T ∗B, which is the pull-back of P onto material coordi-
nates.

We will collect models for both parts of the stress. Since the action stress
causes a contraction of the fibers, it is useful to define a model for muscle
fibers, which is suited for hyperelasticity.

5.1. Geometry of Muscle Fibers.

Definition 2.20 (Line fields [Lee13, chapter 19] and fiber distributions).
A line field on B (or distribution of rank 1) is a rank-1 subbunde of TB.

We will choose a normalized vectorfield

N f : B → TB, with
∥∥N f

∥∥2

TB = 1,

to define a line field span(N f ) ⊆ TB, which describes the direction of the
muscle fibers in the material space B.
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We will call N f the fiber distribution.3

We denote the push-forward of vector field N f into the spatial space by a
lower case letter, i.e.

nf := F N f : B → TS.
(This vector field represents the spatial direction and the actual stretch of
the fibers. It is not normalized.)

Remark 2.21 (Stretching of fibers). We can use the deformation gradient
F or the right Cauchy-Green tensor C to calculate the stretch in fiber
direction. In the general case, with a Riemannian metric G on the material
space B and g on the spatial space S, the square of the stretching in fiber
direction is given as∥∥nf∥∥2

TS = g(F N f ,F N f ) = G(N f ,F
TF N f ).

The musical isomorphism [, which is defined via N [
f := G(N f , ·), suggests

the following notation for the squared stretch in fiber direction

N [
f ⊗N f (C) = G(N f ,CN f ).

This value is always positive and the stretch in fiber direction is well defined
as √

N [
f ⊗N f (C).

(A negative stretch is not possible, since the deformation has to preserve
the orientation.)

In cartesian coordiantes, with trivial metric tensor G = I, we can use the
simple formula √

NT
fCN f .

Definition 2.22 (Fiber stretch and deformation rate). We define the fiber
stretch as

qf := qf (C) :=
√
N [

f ⊗N f (C),

we will often neglect the dependency on C.

The fiber deformation velocity is defined as

vf := q̇f =
1

2qf
NT

f ⊗NT
f (F T Ḟ + Ḟ

T
F ).

Sometimes the notation I4 := q2
f is used, since I4 is similar to an invariant

of the deformation tensor.

3Strictly speaking, the distribution of rank 1 is given by span(Nf ) ⊆ TB and Nf is only a global

frame of the distribution. But the difference is not essential for us.
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Remark 2.23 (A simple construction of fiber distributions). With no data
at hand, we can only guess a reasonable fiber distribution.

A common trick to generate a line field between two poles, is to use a gradient
field of a harmonic potential u, which solves the Laplace equation

∆u = 0, in B,
u = 1, on ∂topB,
u = 0, on ∂bottomB,
∇u ·N = 0, on ∂NB.

(2.4)

We then define the fiber distribution as the normalized gradient field of u,
i.e.

N f :=
1

‖∇u‖∇u.

Within this thesis, we always use either a upward pointing fiber distribution
or a choice like above to define the fiber distribution. But this choice may
not even be topologically equivalent to real muscle fiber distributions.

5.2. Passive Material Laws. Various publications suggest the use of the
Mooney-Rivlin material law from Remark 1.23 to model skeletal muscle
tissue. We have used the parameters from [HR14, Table 2].

To model the influence of fibers to an Mooney-Rivlin material, anisotropic
stress contributions are also used in skeletal muscle models, which can be
found for example in [HR14, Section 2.1.1.].

5.3. Active Material Laws. The active stress term accounts for the con-
traction mechanism of the muscle. Its essential part is always a stress term,
which acts tangential to the muscles fiber distribution.

The contraction strength should be independent from the current deforma-
tion of the muscle tissue. The term nf = F N f is not normalized in the
spatial space and we need to scale the tensor N f ⊗N f by the current fiber
stretch qf . This scaling leads to the correct stress terms.

Model 2.24 (Active contraction stress). For a given scalar field

pact : B → [0, 1] ,

the contraction stress in fiber direction is modelled by the strain energy

Wactive(C) := pact

√
N [

f ⊗N f (C).
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Hyperelasticity Cross-Bridge Model

Nervous Control

fiber deformation and deformation rate

active stress
action potential

Figure 21. Interaction between the macroscopic model of hyperelastic-
ity and the microscopic model.

The field pact models the current contraction force. In case of a two state
model, it would be the summation of the force generated by the myosin
heads, i.e.

pact = −κ
∫
R
µb(q)q dq.(2.5)

The corresponding active stress is given by

Sactive(C) =
pact

qf (C)
N [

f ⊗N f .

More active stress terms are also reasonable and considered in recent pub-
lications. An interesting new level of detail was achieved in [HKR+17],
where the influence of small actin-titin strings is modeled as well. These
strings are not purely elastic, but their attachment and length depends on
the history of calcium ion concentration within the muscle.

5.4. (Quasi-)incompressibility of skeletal muscle tissue.
It is widely agreed, that skeletal muscle tissues are almost incompressible
[HR13], [SSP09], [BR08], since a large portion of its volume consists of
water (i.e. sacroplasma and extracellular matrix fluid). In most models
we will consider the incompressibility to be already included in the passive
material law.

5.5. Summary. In Figure 21 the interaction between the macro-scale model
and the micro-scale model are visualized. The resulting model is stated in
Model 2.25.

In most recent publications, the two state model is either simulated by the
distributed moment (Model 2.15) [BR08] or the cross-bride model is used
to derive relations between deformation, contraction velocity and generated
forces [HR13].
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Model 2.25 (Coupled model between hyperelasticity and two state model).
We model a skeletal muscle tissue as a hyperelastic body (Model 1.18)

ρϕ̈ = b+ Div(P passive + pG+ P active),(2.6)

det(Dϕ) −1− p

κ
= 0,(2.7)

(2.8)

with the Mooney-Rivlin material law from Remark 1.23 for the passive stress
component and an additional (quasi-)incompressibility constraint g as in
Model 1.38 or Equation (1.17).

On each material point X ∈ B, the cross-bridge dynamics are modeled by

∂ρxb

∂t
+ q̇f

∂ρxb

∂q
= f(1− ρxb)− gρxb.(2.9)

The transition probabilities f and g possibly depend on the fiber stretch qf
and the calcium ion concentration [Ca2+].

With

P passive =
∂Wpassive

∂Dϕ
, P active =

∂Wactive

∂Dϕ
,

where the active strain energy is

Wactive := pactqf .(2.10)

The activation pact is defined by Equation (2.5).





Chapter 3

A Lagrangian
Perspective on
Cross-Bridge Theory

In this chapter, we present a field theoretic perspective on cross-bridge the-
ory and identify an underlying Lagrangian system. The transport equation
for the cross-bridge density will be derived as a Liouville equation of a con-
strained system.

However, attachment and detachment of cross-bridges breaks the Lagrangian
structure.

My contributions: This chapter contains my own work. Up to my knowl-
edge, the relation between cross-bridge theory and the Liouville equation
from statistical mechanics was never presented in publications about skele-
tal muscle models before.

Point of Departure. We want to reconsider Model 2.25, but we only
consider the case of vanishing attachment and detachment probabilities, i.e.
f = g = 0. Therefore, no attachment and detachment can happen and the
resulting system is purely Lagrangian.

In Model 2.25, coupling is achieved by the relations

“Sliding velocity” = “Contraction rate in fiber direction”

v =
d

dt

√
N [

f ⊗N f (C) =
d

dt
qf(3.1)
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and

W = Wiso +Q1

√
N [

f ⊗N f (C) = Wiso +Q1I4.(3.2)

If we integrate Equation (3.1), we end up with

qi =
√
N [

f ⊗N f (C) + const.(3.3)

We will use Equation (3.3) to derive Equation (3.2) as a coupling term of a
constrained Lagrangian system.

The value of ’const’ is given by

qi(X, t = 0)− qf (C(X, t = 0)),

but we do not introduce a new variable and use the same symbol for all
myosin heads instead.

How to force a Lagrangian systems to follow a fixed path. To start
gentle, we will consider a linear spring whose positions are constrained to
follow a given path.

Model 3.1 (A trivial linear spring). For a given path qconstr : [0, T ] → R,
we represent the dynamics of a single cross-bridge as a single linear spring.

The Lagrangian is given by

L =
1

2
mq̇2 − 1

2
κq2.

Additionally, we add the constraint

0 = g(q, t) := qconstr(t)− q.

Obviously, the constraint of Model 3.1 fully determines its dynamics, but we
work out the role of the Lagrange multipliers in this case. In fact, exactly
the same calculation will apply, when we replace qconstr by the fiber stretch
of the skeletal muscle later.

The Euler-Lagrange equations for the Lagrangian L̃(q, q̇, λ) = L − λg(q, t)
are given by

0 =
∂L
∂q
− λ∂g

∂q
− d

dt

∂L
∂q̇

=
∂L
∂q

+ λ− d

dt

∂L
∂q̇

= −κq + λ−mq̈(3.4)
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and

q = qconstr.(3.5)

If we use the second derivative of the constraint from Equation (3.5),

q̈ = q̈constr,

we can replace q̈ in the Equation (3.4) and get

λ = κq +mq̈constr.(3.6)

Remark 3.2 (Lagrange multipliers for fixed path constraints). The La-
grange multiplier λ simply cancels out the original force Funconstr = −κq
and replaces it by the acceleration of the fixed path Fconstr = mq̈constr. If
we ignore units, we have

λ = −Funconstr + Fconstr.

Remark 3.3 (A field of trivial linear springs). If we consider a field of fixed
paths qconstr : B × [0, T ]→ R and a field of linear springs q : B × [0, T ]→ R,
the exact same calculation applies as well.

1. Coupling between Hyperelasticity and Cross-Bridge
Theory

As in the derivation for the equations of a continuous rope in Section 5,
we will first define a discrete model for a large, but finite, number of cross-
bridges. From there, we can derive the usual continuous model.

Model 3.4 (Hyperelasticity and cross-bridges, discrete version).
1. We use the usual model of hyperelasticity () with deformation field

ϕ : B × [0, T ]→ R3

and the strain energy
W =Wpassive.

2. We denote the centers of every individual sarcomere by

Xk ∈ B, for all k = 1, . . . ,K.

At each center, a collection of Na attached cross-bridges is modelled as a
collection of linear springs with stiffness κ and mass mxb. The motion is
described by the trajectory

qk : [0, T ]→ RNa .
The Lagrangian is given as

Lk =
mxb

2
‖q̇‖22 −

κ

2
‖q‖22 .



66 3. A Lagrangian Perspective on Cross-Bridge Theory

Figure 1. At each point Xk, we model one sarcomere as a collection of
attached cross-bridges.

3. These two models are coupled via the constraints

gi,k(Dϕ, q̇k) =
√
N [

f ⊗N f (C)

∣∣∣∣
Xk

− qik + const.

The constant depends only on the initial conditions, i.e. the initial extensions
of the cross-bridges.

Model 3.5 (Hyperelasticity and cross-bridges, semi-continuous version).
We continue Model 3.4.

2b. We now assume that the sarcomere centers Xk are distributed with
density

ρsc : B → R.

The configuration of the cross-bridge model will be represented by a field

q : B × [0, T ]→ RNa

and the Lagrangian (density) is given as

Lxb = ρsc ·
(
mxb

2
‖q̇‖22 −

κ

2
‖q‖22

)
.

3b. In the continuous formulation, we use the constraints

gi(Dϕ, q
i) =

√
N [

f ⊗N f (C)− qi + const.(3.7)
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4. The augmented Lagrangian of the complete model is given as

L̃ = Lxb + Lhyperelasticity +
∑
i

λigi.(3.8)

Remark 3.6 (Velocity constraint vs. position constraint). In general, the
constraints g = 0 and ġ = 0 have different Lagrange multipliers and the
relation is not always obvious. However, if g(q) depends only on q, the

Lagrange multipliers are related via λg = λ̇ġ.

Initially, the derivation of the active stress term in the following lemma
was based on the velocity constraint (3.1), which requires the use of the
second order Euler-Lagrange equations, since the fiber contraction velocity
vf depends on a second order derivative of the configuration ϕ. But it turns
out that the position constraints are easier and imply an almost trivial proof.

We are now able to compute the active stress as a coupling term. In fact,
no difficult computations are needed, since the stress is just a term of the
constrained Euler-Lagrange equations for fields.

Lemma 3.7 (Active stress as coupling term). The Euler-Lagrange equations
for Model 3.5 are

ρϕ̈ = b+ Div(P passive + P active),(3.9)

mq̈ = −κq + λ and(3.10)

g = 0, .(3.11)

with

P passive =
∂Wpassive

∂Dϕ
, P active =

∂Wactive

∂Dϕ
,

where the active strain energy is given by

Wactive :=
∑
i

λiqf .(3.12)

Moreover, the Lagrange multipliers are explicitly given by

λi = κqi −m d2

dt2
qf .(3.13)

Proof. 1. We use the constrained Euler-Lagrange equation (1.15) applied
to the augmented Lagrangian

L = Lhyper(ϕ,Dϕ, ϕ̇) + Lxb(q, q̇)−
∑
i

λigi(q
i,Dϕ).

This directly implies (3.11), which is a result of variation of the Lagrange
multipliers λ, see (1.15b).
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2. We also notice that (3.10) was already calculated in Model 3.1. Variation
in qi yields the equation

∂Lxb

∂qi
− λi∂gi

∂qi
− d

dt

∂Lxb

∂q̇i
= 0.

The constraint gi is of the form

gi = −qi + qf + const.︸ ︷︷ ︸
does not depend on qi

Therefore, we get
∂gi
∂qi

= −1,

which yields the additional term +λ in (3.10). The remaining terms are just
the Equations of a linear spring.

3. In (3.9), only the term P active is new compared to the equations of
unconstrained hyperelastic motion. According to (1.15a) the coupling term
is given by

−
∑
i,j

d

dXi

(
−λj ∂gj

∂Diϕ

)
.

Hence, the active stress is given by

P active =
∑
j

λj
∂gj
∂Dϕ

.

Similar than before, we can ignore some terms of gj , because

gi = qf − qi + const.︸ ︷︷ ︸
does not depend on Dϕ

Therefore, we can replace g by qf to compute the active stress, which yields

P active =
∑
j

λi
∂qf
∂Dϕ

=
∂Wactive

∂Dϕ
.

This completes the proof of the Equations (3.9), (3.10) and (3.11).

4. To get the explicit form of the Lagrange multiplier λi we repeat the
computations leading to Equation (3.6).

The second derivative of the constraint qf − qi + const = 0 is

q̈ =
d2

dt2
qf .

Replacing q̈ in Equation (3.10) yields

λi = κqi +m
d2

dt2
qf ,
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which is exactly Equation (3.13). �

Remark 3.8 (Relation to active stress in established models). In the es-
tablished models (Model 2.24), the active strain energy Wactive is

Wactive = pactqf .

If we compare this choice with our result in (3.12), we see

pact
?
=
∑
i

λi.

The explicit formula of the Lagrange multipliers (3.13) yields∫
R
κqµb(q) dq =: pact

?
=

Na∑
i=1

(
κqi +m

d2

dt2
qf

)
.

In the limit Na →∞, we can identify∫
R
κqµb(q) dq ≈

∑
i

κqi.

We will shortly prove a local statement for the limit case m→ 0. The mass
m can be seen as a parameter of the system. If the complete system is
well-posed, the solutions should depend continuously on the data.

Remark 3.9 (Active stress for vanishing cross-bridge mass). The Euler-
Lagrange equations for Model 3.5 with m = 0 are

ρϕ̈ = b+ Div(P passive + P active),(3.14)

qi = qf + const,(3.15)

g = 0,(3.16)

with

P passive =
∂Wpassive

∂Dϕ
, P active =

∂Wactive

∂Dϕ
,

where the active strain energy is given as

Wactive :=
∑
i

λiqf .(3.17)

Moreover, the Lagrange multipliers are explicitly given by

λi = κqi.(3.18)

The second term m d2

dt2
qf does not make a big difference between both mod-

els, since the mass of a single cross-bridge is negligibly small.
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We want to remark that our derivation of Wactive only requires the un-
derstanding of qf as the fiber stretch, but not of the conceptually more
complicated active stress tensor P active.

Why are tiny cross-bridges better? Before we formally set the cross-bridge
mass to zero, we want to explore in which way less and heavier cross-bridges
would lead to different muscle dynamics.

Remark 3.10 (The curse of dimensionality and cross-bridges). Usually, the
coupling between two oscillating systems can lead easily to highly chaotic
dynamics, which is a consequence of complicated feedback between the sys-
tems.

This is not the case in muscle dynamics. The fundamental underlying reason
is the ratio between stiffness and mass.

For a material with elasticity modulus E, cross-section A and equilibrium
length L, the axial stiffness is given by κ = EA

L .

In Equation (3.13) we see that a small mass m of the myosin heads is prefer-
able for our model, since one coupling term vanishes effectively.

If we look at the scaling behavior of κ and m we find

m ≈ s3 and κ =
E ·A
L0

≈ s1,

where s is a characteristic length scale of the system.

If we copy the mechanism of a muscle on a larger scale, we see that the mass
would grow rapidly. This results in a more complicated coupling behavior
between the myosin heads – the working bees of the muscle – and the large
contracting solid.

2. The Liouville Equation for Cross-Bridges

Keeping track of each single cross-bridge is numerically unfavorable, because
the dimension of our system increases with the number of cross-bridges.
Therefore, we want to represent the state of our cross-bridges by a density
function ρxb(q) instead. The computational effort to store an approximation
of ρxb(q) does not depend on the number of cross-bridges, which allows us
to simulate a large ensemble of cross-bridges.

To derive the evolution of a particle density, it is useful to swap into the
Hamilton formalism.
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Remark 3.11 (Hamilton mechanics and Liouville’s equation). The rela-
tion between the Lagrangian and the Hamiltonian formulation of classical
mechanics is given by

p :=
∂L

∂q̇
and H(q,p) := pq̇ − L(q, q̇).

The Liouville equation for this Hamiltonian is often denoted by

ρ̇ = −{ρ,H}.

It describes the evolution of an initial density ρ(q,p, t = 0) = ρ0(q,p) along
the flow of the Hamiltonian system. For a derivation of this equation, we
refer to [MR11, Proposition 5.5.6.].

For our application, it is useful to recall the relation to the methods of
characteristics.

In coordinates, Liouville’s equations reads

ρ̇+
∑
i

(
∂ρ

∂qi
∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
= 0.(3.19)

This equation is a first order partial differential equation for

ρ : T ∗Rn × [0, T ]→ R : (q,p, t) 7→ ρ(q,p, t),

with initial conditions

ρ = ρ0 at t = 0.

In a reverse manner, we can show the physical meaning of Equation (3.19)
by the method of characteristics. The characteristic curves q(t),p(t) for
Equation (3.19) are the solutions of the characteristic system

q̇ =
∂H

∂p
, and ṗ = −∂H

∂q
.

These equations are exactly the equations of motion of Hamilton mechanics.
Hence, the characteristic curves are exactly the trajectories of single particles
of the Hamiltonian system.

The solution of Liouville’s equation is characterised by

ρ(q(t), q(t), t) = ρ0(q(0),p(0)).

Hence, the particle density at (q(0),p(0)) will be transported along the flow
of the Hamiltonian system. This situation is sketched in Figure 2.



72 3. A Lagrangian Perspective on Cross-Bridge Theory

Figure 2. Each characteristic curve of the Liouville equation corre-
sponds to the path of a single particle of the Lagrangian system.

Partial application of Liouville’s equation. Our application is slightly
different compared to the classical application of Liouville’s equation. We
do not want to transform the complete system into a Liouville equation,
but only one part of it. The remaining system will still be subject to the
Euler-Lagrange equations.

We consider the Lagrangian

L = Lhyper(j
1(ϕ)) + Lxb(j1(q))−

∑
i

λigi(Dϕ, q)

We want to replace the state variable q ∈ RNa for Na cross-bridges by a den-
sity ρxb(q) of cross-bridges. As we have seen previously, we are looking for
a partial differential equation, whose characteristic curves are the equations
of motion.

Due to the constraints, the equations of motion are trivial with respect to
q. To fit into our setting, we use the derivative of the constraints gi as a
starting point, i.e.

q̇i = q̇f .

The transport equation

∂ρxb

∂t
+ q̇f

∂ρxb

∂q
= 0
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is therefore the evolution equation of ρxb.

This equation coincides with the two state model with vanishing transition
probabilities f = g = 0.

We arrive at a conservative model, which will be the starting point for the
development for numerical methods in Section 4.2.

Model 3.12 (Hyperelasticity and one state model). The mixed Euler-
Lagrange and Liouville equations for Model 3.5 are given by

ρϕ̈ = b+ Div(P passive + P active),(3.20)

∂ρxb

∂t
+ q̇f

∂ρxb

∂q
= 0,(3.21)

with

P passive =
∂Wpassive

∂Dϕ
, P active =

∂Wactive

∂Dϕ
,

where the active strain energy is

Wactive :=

∫
R
λ(q)ρxb(q)qf (Dϕ) dq.(3.22)

Moreover, the Lagrange multipliers are explicitly given by

λ(q) = κq.(3.23)

3. Averaging in Cross-Bridge Theories

In some sense, the use of smooth classical field theory is totally inadequate
to model the densities of cross-bridges. Per se, the state of two neighboring
sarcomeres can be totally different and will be different. But, sarcomeres in
one region receive almost the same electrical signals and thus the controlling
calcium ion concentration will be very similar.

Seen as a collection of systems which are exposed to similar external influ-
ences, we can locally view them as a statistical ensemble of physical systems,
whose average can be represented by a smooth field of densities.

Regardless of the physical dynamics, we will not be able to simulate all single
sarcomeres. Hence, we will use the assumptions that densities of cross-
bridges do not vary much locally and can be approximated by a smooth
field.
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4. Non-conservative two state model

If we follow a single myosin-head throughout the cross-bridge cycle, we could
model its dynamics as a complicated stochastic system.

But the resulting dynamics are far too complicated for the methods used in
this chapter.

A fundamental problem is the almost binary state change between attached
cross-bridges and unbound myosin heads. The number of myosin heads is
finite, but the attachment of a cross-bridge corresponds to the instantaneous
activation of a new constraint q̇i = vf . Hence, we can not include the cross-
bridge cycle as an external force if we model single myosin heads directly.

Another complication is the blocking of binding-sites by other myosin heads,
which would require to model also a finite number of binding-sites and their
state to determine the likelihood for the creation of a new cross-bridge.

The two state model (Model 2.11) is only a rough approximation of the real
dynamics. As such it is possible that no easy underlying particle system
exists which yields this model in the limit. At least, we were not able to
find one.

Of course, the reasoning behind the two state model directly applies to the
density ρxb in Remark 3.9. This just yields the classical Model 2.25.



Chapter 4

Numerical Methods for
Nonlinear
Hyperelasticity and
Cross-Bridge Models

In this chapter we will summarize common numerical tools for static and
dynamic hyperelasticity.

The finite element method (FEM) is a well established theory for continuum
mechanical simulations, in particular for rubber-like, soft tissues. We will
give a short introduction to the methods involved in the solution of the
system of nonlinear partial differential equations in elasticity. A careful
analysis of these numerical methods is beyond the scope of this thesis and
we also ignore any kinds of uniqueness and existence problems.

For time integration, we used explicit methods with small time steps, since
these methods are far less expensive and allow the use of small time steps.
Unfortunately, we were not able to overcome all numerical challenges in the
case of incompressible hyperelastic motion, where explicit methods become
very unstable.

We will present numerical results of static contraction experiments and for
the motion of a contracting solid. In the end, we will demonstrate an im-
plementation of the complete model, where a two-state cross-bridge model
is used to compute the active contraction stress of an hyperelastic solid.
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We mainly used [Wri08] to learn about nonlinear finite elements and their
application in elasticity. The main references for this chapter are [Deu11],
[AH09] and [BBF13]. And for time integration we used [Sim13], [MW01]
and [HLW06].

My contributions: All numerical experiments in this chapter where imple-
mented by myself, using of the FEniCS framework. My contributions are
the implementation of Model 2.25 as shown in Section 4.5 and the numerical
experiments in Section 4.2 and Section 4.3.

1. Nonlinear Finite Elements for Static Hyperelasticity

We are interested to solve the nonlinear variational problem from Equa-
tion (1.14), where we seek to find a configuration ϕ ∈ C, which satisfies

dS(ϕ)[η]︸ ︷︷ ︸
=: ã(ϕ,η)

+Fb[η] + Fτ [η]︸ ︷︷ ︸
=: −˜̀[η]

= 0, for all η ∈ TϕC.(4.1)

This equation is linear in the variation η, but nonlinear with respect to the
solution candidate ϕ ∈ C. Hence, we can define a nonlinar map

Ã : C → T ∗C : ϕ 7→ ã(ϕ, ·).

Now, the variational problem can also be formulated as a root-finding prob-
lem. For this purpose, we define

F : C → T ∗C : ϕ 7→ Ã(ϕ)− ˜̀.
The solutions ϕ ∈ C of the variational problem are exactly the roots of F ,
i.e.

ã(ϕ, η) = ˜̀[η], for all η ∈ TϕC,
holds, if and only if

F (ϕ) = 0 ∈ T ∗C.

We require F to have a unique root x∗, or in other words, the variational
problem should have a unique solution.

Remark 4.1 (Sobolev spaces). As noted already, the space of smooth func-
tions is too restrictive for applicable existence theorems. Moreover, most
finite element bases are not smooth on the boundaries of the computational
cells. As a consequence, the configuration spaces must contain weakly dif-
ferentiable functions. The choice of the appropriate function spaces depends
on the Lagrangian density L, the domain B and the boundary conditions.

For linear elasticity, a reasonable choice would be

C := {ϕ ∈ H1(B,Rd) | Tr(ϕ) = ϕD on ∂DB},
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where Tr : H1(B,Rd)→ H
1
2 (∂DB,Rd) is the trace functional of the Sobolev

space H1(B,Rd) and ϕD : ∂DB → Rd are the Dirichlet boundary conditions.
We assume to have nice boundary conditions, in particular the set C should
not be empty.

The space C is an affine linear subspace of the Hilbert space H1(B,Rd).
After shifting the affine subspace C, such that it contains the zero, we can
identify H1(B,Rd) ∼= C ∼= TϕC ∼= T ∗ϕC.

The use of Sobolev spaces changes the topology of our function space and
therefore the notation of convergence, which influences for example also the
notation of differentiability. We will commit the crime of ignoring these
details and refer to the detailed treatment of functional analytic aspects of
elasticity in [MH83, Chapter 6].

1.1. Newtons method in Banach spaces. To solve the root finding
problem F = 0, we can use Newtons method, which generalises well to
infinite dimensional spaces and provides an analytic tool to construct the
solution.

If F : C → T ∗C is Fréchet differentiable, we can linearise the root-finding
problem

0 = F (ϕ+ ξ) = F (ϕ) + DF (ϕ)[ξ] +O(‖ξ‖2)

to determine a step ξ ∈ TϕC towards the root of the function F .

In this context, Newton’s method reads

DF (ϕk)[ξk] = −F (ϕk), ϕk+1 := ϕk + ξk, for all k = 0, 1, . . .

Each step ξk ∈ TϕkC is the solution of an infinite dimensional linear problem

DF (ϕk)[ξk] = −F (ϕk) ∈ T ∗C,(4.2)

which is the linearisation of the nonlinear problem F (ϕ) = 0 around the
point ϕk.

If F represents a nonlinear PDE, then each step requires the solution of the
corresponding linearised PDE.

We assume that the Newton sequence is well defined and converges to a
limit point ϕ∗ := limk ϕ

k. Of course, this may not be satisfied in the case of
nonlinear elasticity, since physical strain energy densities W are not convex
functions.
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1.2. The Linearised Problem. To solve the linearised problem in Equa-
tion (4.2), we will use the finite element method, which is based on a
Galerkin-projection of the weak formulation for a PDE.

The linearised problem is given by

DF (ϕk)[ξk] + F (ϕk) = DÃ(ϕk)[ξk] + Ã(ϕk)− ˜̀= 0 ∈ T ∗C,

where ξk ∈ TϕkC denotes a variation of ϕk.

If we insert ã(ϕ, ·) = Ã(ϕ), we get

∂ã

∂ϕ
(ϕk, ·)[ξk] + Ã(ϕk)− ˜̀= 0,

where ∂ã
∂ϕ denotes the Fréchet derivative of ã with respect to its first argu-

ment.

Hence, ξk ∈ TϕkC is characterized as the solution of the linear variational
problem

ak(ξk, η) = `k[η], for all η ∈ TC,(4.3)

with

ak(ξ, η) :=
∂ã

∂ϕ
(ϕk, η)[ξ] and `k[η] := `+ Ã(ϕk).

Notice, that the variation ξ := 0 ∈ TϕkC does not correspond to a stress-free
configuration of the solid! The typical equations of linear elasticity are only
recovered, if the current configuration ϕk is stress-free.

1.3. The Galerkin Method for the Linearized Problem. For the lin-
earized problem, we finally can use the finite element method, which has its
theoretical foundation in the Galerkin-projection.

In this subsection, we follow [AH09, Section 9.1].

Let us denote the Hilbert space of variations as V := TϕkC.

In the case of linear hyperelasticity, the existence of a unique solution for
Equation (4.3) is well understood and follows for example from an applica-
tion of the classical Lax-Milgram Lemma [AH09, Section 8.1].

In particular we know, that the bilinear form ak is bounded∣∣ak(ξ, η)
∣∣ ≤M ‖ξ‖V ‖η‖V , for all ξ, η ∈ V.

And as a consequence of Korn’s inequality, it is also strongly elliptic

ak(η, η) ≥ c0 ‖η‖2V , for all η ∈ V.
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To get an associated finite dimensional approximation, the Galerkin method
suggests to choose a finite dimensional subspace VN ⊆ V . The projection of
the variational equation onto VN yields the finite dimensional problem

ξkN ∈ VN , ak(ξkN , η) = `k(η), for all v ∈ VN .(4.4)

Another application of the Lax-Milgram Lemma yields, that this system is
also uniquely solvable.

For a basis {φi}i of VN the projected linear system can be rewritten as

ξkN =
∑

γki φi, AkN · γk = bkN .

The coefficients of the stiffness matrix A are given by Akij = ak(φi, φj) and

the load vector is defined as bki = `k(φi).

The assembling of these matrices is one of the computational challenging
tasks in the finite element methods. The dependency on the current con-
figuration ϕk forces us to repeat the assembly step again and again in each
iteration of the (exterior) Newton method.

If we choose an increasing sequence of sufficiently large finite dimensional
subspaces

V1 ⊂ V2 ⊂ · · · ⊆ V, with
⋃
n≥1

VN = V,

the corresponding solutions ξkN converges in the limit to the exact solution,
i.e.

ξk = lim
N
ξkN .

This analytical procedure is called the Galerkin method.

1.4. The Principle of Asymptotic Mesh Independence. In the previ-
ous section, we have discussed the solutions of the linearized problem. If we
fix a particular finite dimensional test and trial space VN , we can compute
a Newton sequence ϕkN , but this sequence does not solve the root finding
problem F = 0, but a projected version of this problem, i.e. FN = 0. As
such it is also unclear if the resulting sequence has a similar convergence
behaviour or if it gets sufficiently close.

The situation is summarized in the following diagram.

F = 0 ϕk

FN = 0 ϕkN

Newton

FEM

Newton

?
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This section follows [Deu11, Chapter 8].

To analyze the situation, it is useful to rewrite Equation (4.4) again as a root
finding problem. The Galerkin-projection in Equation (4.4) corresponds to
a replacement of

F : C → T ∗C
by

FN : VN → V ∗N : ϕ 7→ F (ϕ)
∣∣
VN
,

where F (ϕ)
∣∣
VN

: VN → R denotes the restriction of F (ϕ) : TϕC → R to the

space of test functions VN ⊆ TC.
The restriction of the domain of F corresponds to the choice of the trial
space to be VN and restricting F (ϕ) fixes the test space to be VN .

The first obvious question is, whether the roots converge in the limit. Let
ϕ∗N := limk→∞ ϕ

k
N denote the limit point of Newtons method, applied to FN .

Then, we obviously want to know if these approximations also converge to
ϕ∗, i.e.

ϕ∗N
?→ ϕ∗, for N →∞.

In practice, we are only able to compute ϕkN for a large, but finite number
N . Under technical assumptions, it is possible to prove that for sufficiently
large N , a bound of the form

lim sup
k→∞

∥∥∥ϕkN − ϕk∥∥∥ ≤ 1

ω

holds. In this estimate, ω denotes a common affine covariant Lipschitz
constant of the Newton schemes for F and FN , related to the quadratic
convergences, for details we refer to [Deu11, Theorem 8.2]. With stronger
assumptions, is also possible to show the existence and uniqueness of the
discrete solution point ϕ∗N and the quadratic convergence of the Newton

sequence ϕkN [Deu11, Theorem 8.5].

If the sequences ϕk and ϕkN show similar convergence behaviour for suffi-
ciently large N , we speak of asymptotic mesh independence, since N usually
corresponds to the resolution of the computational mesh.

In Figure 1, a simplified version of this situation is sketched. The branches
can be considered to correspond to one discretization level N .

1.5. Newton Methods for Large Finite Dimensional Problems.
The application of Newton methods to large systems requires some addi-
tional care in theory and implementation, since the direct solution of

DFN (ϕkN )[ξkN ] = −FN (ϕkN )
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x∗1 x∗2

x∗3

x∗

x-
ax

is

z
-a

x
is

y-axis

Figure 1. The blue dots represent Newton sequences ϕk1 , ϕk2 and ϕk3 ,
which are restricted to the x-axis, xy-plane and xyz-subspace. The red
dots represent a Newton sequence xk in an infinite dimensional space
(of course, it is not possible to visualise infinite dimensions in this plot).
[Deu11, Figure 8.1]

might be computationally infeasible.

To shorten the notation, we aim at solving

F (x) = 0,

for F : D ⊆ Rn → Rn, which is assumed to be sufficiently differentiable.

This section is also based on [Deu11].

There exist many modifications of Newton’s method. We only summarize
the relevant modifications for our application.

1.5.1. Ordinary Newton method. The well-known classical Newton method
reads

DF (xk)∆xk = −F (xk), xk+1 = xk + ∆xk, for all k = 0, 1, . . . .

Locally around a solution, the method is convergent of second order. The
domain of convergence is not only a theoretical assumption. Depending on
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the initial guess, the method may not converge at all or only to a local
minimum.

1.5.2. Simplified Newton method. In high dimension, the computation of the
Jacobian is time consuming. A common trick to overcome this bottleneck is
to update the Jacobian only once in a while. For a theoretical description,
we simply assume that only the initial Jacobian is computed, which yields
the following method

DF (x0)∆xk = −F (xk), xk+1 = xk + ∆xk, for all k = 0, 1, . . . ,K.

After K steps the point xK+1 can be used as a new initial point. This speeds
up each single iteration, but both the number of iterations and the domain
of convergence change.

1.5.3. Inexact Newton methods. If the solution of the linear system

DF (xk)∆xk = −F (xk)(4.5)

is carried out by an iterative method, we call the method inexact.

This yields an additional iteration in each step, for example

ykl+1 := Φk(ykl ), for all l = 0, 1, . . .

and

∆xk := lim
l
ykl ,

where Φk denotes some iterative method for the linear system in Equa-
tion (4.5).

The resulting method has two iterations. With inner iteration (of the vari-
able l) we refer to the iterative solution of the linear system from Equa-
tion (4.5). The outer iteration (in the variable k) is the usual Newton
iteration, carried out with the approximations of ykLk ≈ ∆xk, for some large
Lk, which might depend on stopping criteria etc.

1.6. Summary.

(1) Find initial configuration ϕinit and choose a finite dimensional test and
trial space VN .

(2) Outer Newton Iteration with respect to k:
(a) Compute the linearisation of F around ϕk

(b) Assembly of the stiffness matrix A and the load vector b.

(i) Iterative solution of the linear system Aξk = b.

(c) Set ϕk+1
N := ϕkN + ξkn.
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1.7. Continuation Methods. The convergence of Newton’s methods de-
pends crucially on a good initial guess. Without a good initial guess, other
strategies are needed to solve the problem numerically. For time stepping
methods, the previous time step already provides a good initial guess. But
for static hyperelasticity, the initial guess is usually just the stress free con-
figuration of the body, which might be outside of the convergence range of
Newton’s method. We restrict our considerations to the static case.

Continuation methods provide a tool to overcome the lack of a good initial
guess. For a mathematical treatment we refer to [Deu11, Chapter 5]. For
a practical introduction and application in hyperelasticity, we recommend
[Wri08, Chapter 5].

The idea is to replace the nonlinear problem

F (ϕ) = 0

by a perturbed problem,

F (ϕ;λ) = 0,

which depends on a new parameter λ ∈ [0, 1]. The dependency on λ should
be regular enough, such that

N := {(ϕ, λ) ∈ C × [0, 1] | F (ϕ, λ) = 0}
defines a smooth curve in C×[0, 1]. The perturbed problem should be chosen
such that the original problem is obtained for λ = 1 and for λ = 0 a solution
ϕ0 of the perturbed problem should be available.

To solve the original problem, we start at (ϕ0, 0) ∈ N and follow the curve
N until we reach the desired solution (ϕ1, 1) ∈ N .

Remark 4.2 (A parametrization for static hyperelasticity). For static hy-
perelasticity, we could define

F (ϕ;λ) := dS(ϕ) + λ(Fτ + Fb).

Additionally, it is also reasonable to replace the Dirichlet boundary condi-
tions

ϕ = ϕ0 + uinit, on ∂DB,
by

ϕ = ϕ0 + λuinit, on ∂DB.

We want to note, that this is only one out of many possible choices!

Remark 4.3 (Parametrization for (quasi-)incompressible hyperelasticity).
If we also impose incompressibility, a parametrization as suggested in Re-
mark 4.2 is often insufficient, since also for small λ no solutions can be
found.
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To fix this, it is helpful to use a relaxation like in Remark 1.39 where the
problem

F (ϕ, p;λ) = dS̃(ϕ, p) + λ(Fτ + Fb) = 0,

was relaxed via an additional term p2

2κ , which yields

F (ϕ, p;λ, κ) := dS̃(ϕ, p) + λ(Fτ + Fb) +
p2

2κ
= 0.

For small parameters κ, the quadratic term p2 dominates the problem and
therefore the Newton methods will converge more likely.

But we need to update the two parameters λ→ 0 and κ→∞.

Method 4.4 (Natural parameter continuation). If we start with λ0 = 0
and an initial guess ϕ0, such that

F (ϕ0;λ0) = 0

is satisfied, we could choose a next step λ1 > λ0 and try to find ϕ1 with
Newton’s methods such that

F (ϕ1;λ1) = 0.

We can iterate this process until we reach λk = 1.

In our simulations, we used a constant maximal step size hmax and the
update rule

λk+1 = λk +
1

2l
h.

Whenever the solution method fails, we increase l′ = l + 1 and try again to
solve the less perturbed system. If the previous solution step was successful,
we decrease the value l′ = max(l − 1, 1).

Method 4.5 (Heuristic parameter continuation for two parameters). In the
situation of two parameters λ and κ, a new update strategy must be used.

Since κ should attain large values, it is instructive to introduce another
parameter γ ∈ [0, 1] and set

κ(γ) = 10n0+γ(n1−n0),

where n0 and n1 are two exponents, such that κ(0) yields a simple problem
and κ(1) is close to the incompressible case. We used for example κ(0) = 104

and κ(1) ≈ 107, but this also depends on the scale of the problem.

For our application, it was sufficient to apply Method 4.4 recursively. If we
fix a value λ1, we can consider

F (ϕ, p;λ1, γ) = 0
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as a continuation problem with parameter γ. This problem can be solved
with Method 4.4, which yields solutions ϕ1 and p1 satisfying

F (ϕ1, p1;λ1, γ = 1) = 0.

Therefore, we can solve F (ϕ, p;λ), which allows us to apply Method 4.4 onto
the parameter λ.

Remark 4.6 (Advanced continuation methods). We want to remark, that
we used the natural parameter continuation due to its simplicity. More
advanced methods exist and are also used in elasticity. One approach would

be, to solve in each continuation step the system G̃ = 0 for

G̃ : (ϕ, λ) 7→ (F (ϕ;λ), G(λ;λ0)),

where G is some chosen function, which encourages a step closer to the
desired solution. In this way, both ϕ1 and λ1 are found simultaneously by
an application of Newton’s method.

We do not use such advanced methods for our simulations, due to the related
complexity of their integration in FEniCS.

1.8. Mixed Finite Elements. If we simulate incompressible or quasi-
incompressible materials, the Lagrange multiplier p becomes an additional
unknown of the system and we need to choose a trail and test space for this
new component of the solution.

Choosing the same type of finite elements for the discretization of the dis-
placement ϕ and the pressure p is naive. For example, the mixed finite ele-
ment P1-P1 fails to satisfy any inf-sup condition for the linearized problem
and the discretization is not stable. More details about inf-sup conditions
can be found in [BBF13, section 4.2.2].

The choice of stable finite elements is crucial in order to get a convergent
method. A detailed treatment about mixed finite elements can be found in
[BBF13].

For our numerical experiments, we simply used the Taylor-Hood pairing
P1-P0 or P2-P1, which was for example also used in [SSP09].

Remark 4.7 (Finite elements for the pressure variable.). The Lagrange
multiplier is only unique up to an additive constant. Therefore we either
need to define boundary conditions for the pressure or use finite elements
which respect this procedure.

The appropriate space for the pressure variable without boundary conditions
would be

p ∈ L2(B,R) /R ,
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where two pressure fields are identified with each other if they only differ by
a constant. This can be achieved numerically, if we orthogonalize the finite

element basis (φi)i=1,...,N such that the new basis (φ̃i)i=1,...,N−1 is orthogonal
to the constant function. For linear problems, this procedure in implemented
in FEniCS.

2. FEniCS – A Magic Finite Element Framework

Mathematical treatments of Finite Element Methods usually forget to stress
an important practical point: A Finite Element implementation is literally
as strong as it weakest link. One wrong sign or one false index will skew up
all results!

With this in mind, an automatic finite element framework like FEniCS is
not just handy, it is essential to get simulations working within a limited
time frame.

FEniCS makes great use of symbolic expressions. This allows to define
simulations using a source code, which closely follows the mathematical
formulation of the problem. Therefore, we do not need to find explicit
formulas for the stress tensors from elasticity.

But, as a tool for spatial discretization, the framework still lacks high-level
interfaces for the use of time integration methods, which is a big drawback if
advanced time integration methods are required for the simulation of motion.

Example 4.8 (Static Hyperelasticity). In this example we explain the prin-
cipal steps required to solve a PDE using FEniCS. We left out technical de-
tails like the loading of mesh files or the definitions of boundary conditions.

After we have loaded the mesh file, a typical FEniCS simulation starts with
the definition of the finite element spaces. This is shown in the code listing
below. Various finite element types are available in the framework. In this
example we used quadratic Lagrange elements for the displacement variable
and linear Lagrange elements for the pressure. After the initialization of
these elements, we can define the trial and test space V .

# Init finite elements spaces

element_u = VectorElement("CG", mesh.ufl_cell(), degree=2)

element_p = FiniteElement("CG", mesh.ufl_cell(), degree=1)

# Mixed finite element space

TH = element_u * element_p
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# Create function space

V = FunctionSpace(mesh, TH)

In the next step, we prepare relevant constants and expressions for the
model. The object Expression also allows to define general functions, which
have to be valid C++ code, since all expressions will be compiled. This step
is crucial for the fast assembly of the linear systems. The parameter scale

in the definition of p act and B can be used as a continuation parameter.

# Mooney-Rivlin parameters (in Pa)

c_10 = Constant(6.352e4); c_01 = Constant(3.627e3)

rho = Constant(1.1e3)

# current muscle contraction

p_act = Expression("p_max*p_act*scale",

p_act=1., p_max=73e3, scale=0.,

degree=0)

# Define acting body force per unit volume

B = Expression(("scale*gravity", "0."),

scale=0., gravity=9.81, element=element_u)

# Traction force on the boundary

tau = Constant((100.0, 0.0, 0.))

The next lines of code are almost like mathematical statements. The func-
tion u represents the displacement field, it is related to the deformation field
ϕ via, ϕ = id + u. The last line defines two test functions η and q.

# Define test and trial functions

w = Function(V) # most recently computed solution

(u, p) = split(w); p = variable(p)

(eta, q) = TestFunctions(V)

The next lines implement the Lagrangian L of the system and the fiber
distribution Nf . In this example, the fibers are just aligned parallel to the
z-axis.
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An assumption, which is hidden between the lines, is that the mesh corre-
sponds to the stress-free initial condition of the solid.

I = Identity(3) # Identity tensor

F = variable(I + grad(u)) # Deformation gradient

C = F.T * F # Right Cauchy-Green tensor

J = det(C)**0.5

# Invariants

I_1 = tr(C)

I_2 = 0.5*((tr(C))**2 - (tr(C*C)))

# Fiber directions

N_f = as_vector([[0.0], [0.0], [1,0]])

I_4 = inner(a_0, C*a_0)

# Storage strain energy

W_iso = c_10*(I_1 - 3) + c_01*(I_2 - 3)

W_act = p_act*sqrt(I_4)

# Constraint

g = J-1

# Augmented Lagrange function

L = -W_iso - W_act - p*g

# Compute stress tensors

P = diff(W_iso+W_act, F)

G = diff(g, F)

In close analogy to Section 1, we can define a function F for the nonlinear
problem. To define the weak form of our partial differential equation, we can
use operators and the inner product. The symbolic tools from FEniCS will
automatically translate this weak formulation into the unified finite element
language, for which efficient assembly routines exists.

# Nonlinear weak formulation

F = ((inner(P + p*G ,grad(eta)) + inner(B,eta) + g*q)*dx

- inner(tau,eta)*ds(1))
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At this stage, we can already call a function to solve the nonlinear prob-
lem directly. For more control, we can also prepare the linearization. The
function derivative computes the symbolic derivative of F at the point w

in direction xi. In each step of the Newton iteration, we will solve for the
trial function xi, which determines the next step of w.

# Prepare linearized problem (around w)

xi = fe.TrialFunction(V)

DF = derivative(DS, w, xi)

FEniCS allows to call various different solvers and methods for an inexact
Newton iteration. We can also change the number of used quadrature points
or set additional options. In this example, we only use the option to optimize
the compiled C++ . In the last line of the code, we can plot the resulting
solution. This is one of the main advantages of a high-level interface for
FEniCS, since we can investigate the computed solutions directly.

# Init nonlinear solver

ffc_options = {"optimize": True}

problem = NonlinearVariationalProblem(

F, w, bcs_u + bcs_p,

J=DF,

form_compiler_parameters=ffc_options)

solver = fe.NonlinearVariationalSolver(problem)

solver.solve()

# Plot solution

plot(w.sub(0), mode='displacement')

Remark 4.9 (Efficiency of FEniCS). For complex simulations, efficiency is
almost as important as a readable source code. For this reason, most finite
element codes are written in FORTRAN, C++ or other hardware efficient
languages. Just like FEniCS itself. The python interface is really just an
interface to call powerful C++ routines underneath. Giving an overview of
all sub-projects and ideas is quite complex. For further details, we refer to
the official FEniCS book [LMW12].
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To highlight another aspect of the magic behind FEniCS, it is worth noting,
that FEniCS is build on top of the idea of a unified finite element language
(UFL). One important part of the FEniCS project is the generation of ef-
ficient C++ code for fast numerical assembling. This generated C++ code is
highly optimized. For example, at first all weak forms will generate some
code which follows roughly their implementation in python. But then, an
optimization of this code will take place to collect duplicated computations
and spare out unused variables and computations.

Having this in mind, it is instructive to focus on readable python code
instead of optimizing already on this level.

3. Numerical Results for Static Hyperelasticity with
Constraints

To demonstrate the methods discussed in previous sections, we simulate how
a two dimensional muscle lifts a weight. Of course, the simulation results
are unrelated to real weightlifting, since the strength of our arms is a result
of a multi-body system of bones (rigid bodies), skeletal muscles and other
connective tissues. The computational mesh for the muscle is shown in
Figure 2.
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Figure 2. The original mesh on the left and two uniformly refined
versions. The numerically experiments in this section where performed
with the second mesh.

The plots in Figure 3 are generated with a slightly modified version of the
source code from Example 4.8. In two dimensions the use of continuation
methods is only necessary for large increments of the continuation parameter
scale.
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Figure 3. Different muscles activations with uniform sarcomere density.
The plots were created with continuation parameters scale=0, 0.4,

0.8, 1.2 and a strict incompressibility constraint. The continuation
parameter in this example corresponds to different muscle activations.

Figure 4. Plot for an example density ρsc of sarcomeres. At the end of
the muscle, the density is lower. The chosen density is not realistic, but
it models an increase of supportive tissue in areas which are close to the

tendon.

3.1. Static Hyperelasticity with non-uniform sarcomere density.
To show the flexibility of the numerical implementation with FEniCS, we
demonstrate a small variation, which is the first step towards a real multi-
scale model. A similar approach is also used in [RSS17].

Following the notation from Model 3.5, we use a non-uniform density ρsc

of sarcomeres. This approach is used to model a higher percentage of sur-
rounding tissue at the end and the beginning of the skeletal muscle.

The choice of the density ρsc is shown in Figure 4. Numerical simulations
for different contraction strengths are shown in Figure 5.
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Figure 5. The repeated experiment from Figure 5, but with non-
uniform sacromere density as in Figure 4. As expected, the deformed
body now contracts more in the center, which is at least intuitively closer
to the behavior of real skeletal muscles.
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4. Time Integration Methods

In this section, we compare two numerical methods for the cross-bridge
transport equation, we discuss a numerical experiment with explicit inte-
gration schemes for incompressible hyperelasticity and finally, we shortly
demonstrate an implementation for a coupled model of a hyperelastic solid
and the cross-bridge model.

For this section we used [Wri08] and [Sim13].

4.1. Numerical Methods for Cross-Bridge Models. To focus on cou-
pling effects between a cross-bridge model and the muscle tissue, we replace
the equations of hyperelasticity for the muscle tissue in Model 3.12 by an
equation for a simple linear spring. The resulting model is summarized in
Model 4.10.

Model 4.10 (Linear spring and two state model). We consider the mixed
Euler-Lagrange and Liouville equations

mf q̈f = −κfqf + pact,(4.6)

∂ρxb

∂t
+ q̇f

∂ρxb

∂q
= f(1− ρxb)− gρxb.(4.7)

If the transition probabilities vanish, f = g = 0, we get the corresponding
one state model.

The activation is given by

pact :=

∫
R
qκρxb(q) dq.(4.8)

Remark 4.11 (Clash of different numerical methods). An interesting fea-
ture of Model 4.10 is the mix between two very different systems with special
numerical methods for each of them.

The Liouville equation (4.7) is, due to the constraints, a one dimensional
conservation law. For these kinds of equations, special finite volume methods
or finite difference methods exits. We will use the upwind method for our
numerical experiments.

On the other hand, the Hamiltonian system (4.6) inhibits a special geometric
structure for which symplectic and variational time integration methods are
advantageous.

We will shortly define some classical numerical methods, which are applica-
ble for Model 4.10.
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Method 4.12 (Upwind scheme and Strang splitting). We use the notation

ρji := ρxb(qi, tj),

where qi = ∆q · i represent an equidistant grid in space and tj = ∆t · j are
equidistant time steps.

The upwind method is given by

ρj+1
i := Φ∆t

up(ρj) := ρji +
∆t

2∆q

(
vf (ρji−1 − 2ρji + ρji+1)(4.9)

+
∣∣vf ∣∣ (ρji+1 − ρ

j
i−1)

)
.(4.10)

This method is a conservative, first order accurate scheme for the transport
equation. Its stability condition is given by the CFL-condition∣∣∣∣vf∆t

∆x

∣∣∣∣ < 1.

We will use zero Dirichlet boundary conditions for the transport equation.
However, in the following experiments, we will see that this choice is simple,
but not perfect for our application.

For the two state model, we need to simulate the source terms as well. The
most simple choice is an explicit Euler scheme

Φ∆t
src(ρ

j) := ρji + ∆t
(
f(qi)(1− ρji )− g(qi)ρ

j
i

)
To combine the two integrators, we use a simple splitting scheme

ρj+1 := Φ
∆t/2
src ◦ Φ∆t

up ◦ Φ
∆t/2
src (ρj).(4.11)

Method 4.13 (The method of moving frames). As noted in Remark 2.10,
the transport equations correspond to a Lagrangian viewpoint. Despite the
fact that we also use the Lagrangian viewpoint for the simulation of the
hyperelastic solid, there is no reason not to use the Eulerian viewpoint for
the two state model.

If we apply the coordinate transformation

q̃ := q + qf ,

the two state model transforms into

Dρ̃xb

Dt
= f(1− ρ̃xb)− gρ̃xb.

Evaluated at a discrete grid q̃i, we get a set of ordinary differential equations

∂ρ̃i
∂t

(t) = f(q̃i − qf (t))(1− ρ̃i(t))− g(q̃i − qf (t))ρ̃i(t).

We will use the explicit Euler method to integrate these equations.
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Method 4.14 (Symplectic Euler scheme). Again, we will use the notations

qjf := qf (tj) and vjf := vf (tj).

Applied to Equation (4.6), the symplectic Euler scheme reads

vj+1
f := vjf + ∆t(−λqjf + pjact),

qj+1
f := qjf + ∆tvj+1

f .

If we know the discrete density ρj , we can compute pjact with the discrete
version of Equation (4.8).

The symplectic Euler method is well-suited for the simulation of linear
springs, since it preserves the total energy of the physical system asymp-
totically.

We will combine Method 4.14 with Method 4.12 and with Method 4.13.
Simulation results are presented in the next two subsections.

4.2. Numerical experiments with the one state model. For vanish-
ing transition probabilities, f = g = 0, the moving frame method is almost
optimal, since the density remains constant from the Eulerian viewpoint.
The upwind scheme cannot take advantage from vanishing transition prob-
abilities, a simulation result can be seen in Figure 6.

In Figure 7 we can directly see why the upwind scheme loses energy. If the
extension of the fiber qf is large, all corss-bridges are getting closer to the
boundary of the numerical grid.
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Figure 6. The total energy of Model 4.10 for both methods. The up-
wind methods fails to preserve the energy.
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Figure 7. Density evolution in the conservative case f = g = 0. In the
moving frame approach, the ’frame’ follows the exterior Hamiltonian
system. At t = 10 we can see how the frame of the upwind method
represent the exact density.

The comparison is of course a bit unfair, since the moving frame approach
is an exact solution for the conservation law, and hence the numerical prop-
erties of the symplectic time integration dominate the simulation result.

4.3. Numerical experiments for the non-conservative case. In the
previous section, the moving frame method was clearly advantageous, com-
pared to the upwind scheme. Surprisingly, the moving frame approach suf-
fers badly from instabilities if the transition probabilities f, g are not zero.

We have use transition probabilities like in Remark 2.12. Attachment of
cross-bridges is always related to an energy flux

Eattachment =

∫
κqf(q)(1− ρxb(q) dq

and detachment causes an energy flux

Edetachment =

∫
κqg(q)ρxb(q) dq.

In this way we can measure the energy, which is totally consumed by the
system. The resulting numerical simulations are shown in Figure 8 and
Figure 9.
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The numerical experiments clearly show high oscillations in the solution of
the moving frame method.

This is due to the negative terms in the right hand side of Equation (4.7),
i.e.

∂ρxb

∂t
+q̇f

∂ρxb

∂q
= f · (1 − ρxb)− g · ρxb.

This system is similar to the test equation for stiffness, ẏ = −λy. The
explicit Euler method is not a stiff integration method and leads to highly
oscillating solutions. If we change the transition probabilities, such that the
right hand side only contains positive coefficients, then the oscillations also
disappear.

The numerical diffusion of the upwind method smears out these fast oscil-
lations and shock waves.
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Figure 8. Energy increase and decrease due to attachment and de-
tachment of cross-bridges. The moving frame methods creates highly
oscillating solutions. Due to numerical diffusion, the upwind scheme
does not suffer from this illness.
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Figure 9. Density evolution in the non-conservative case. Shocks prop-
agate in the solution of the moving frame approach, which leads to
numerical instabilities. The numerical diffusion of the upwind scheme
prevents these instabilities.
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4.4. Experiments with explicit time integration methods. The most
interesting phenomena of cross-bridge models are visible for fast events. A
simulation with high resolution in time would be interesting to investigate
the effect of the detailed cross-bridge model on the hyperelatic solid.

We tried to apply different explicit time integration schemes for differential-
algebraic equations to incompressible and quasi-incompressible materials.
The application of different explicit schemes to incompressible materials
was never successful. An example is shown in Figure 10 and Figure 11.

For quasi-incompressible materials, time integration was possible with very
small time steps. For incompressible materials, the time integration always
failed, since very fast oscillations became dominant.
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Figure 10. On the left: Initial position for the benchmark problem. In
the center: Stress-free configuration of the body. On the right: Defor-
mation after 5000 time steps with steps size ∆t = 10−4 for the quasi-
incompressible material.

4.5. Implementation of the complete model. In the last section of
this thesis, we want to present a proof-of-concept implementation of a quasi-
compressible hyperelastic solid, with dynamically coupled two-state models
like in Model 2.25.

Warning: The numerical results in this section are no reliable!

Due to time limitations during the creation of this work, we where not
able to perform a serious convergence analysis for the numerical results
of this section. The implementation shows at least, that a simulation is
computationally possible.

Method 4.15 (Numerical methods for the complete model). For spatial
discretization, we used a P2-P1 Taylor-Hood pairing of finite elements for
displacement and pressure.
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Figure 11. Even for very small time steps, the half explicit method
yields a highly oscillating solutionf when applied for the simulation of
an incompressible material.

At each quadrature point, the cross-bridge density ρxb(q) was discretized
with respect to q by 20 cells. Therefore a 20 dimensional Lagrange element
of degree 2 was used.

We used the half-explicit time integrator from [Sim13, Section 7.1.2.] for
the time integration of the quasi-incompressible hyperelastic solid. The in-
tegration was only sucessful for small time steps. For the plots we used the
step size ∆t = 10−5.

The two-state model was discretized by an upwind scheme with Strang split-
ting (Method 4.12).

The upwind method was chosen, since the results from Section 4.3 showed,
that the upwind method is more stable than the moving frame method

The results presented in Figure 12 and Figure 13 where performed with the
same material parameters as in Example 4.8 and bulk modulus κ = 106.



4. Time Integration Methods 101

Figure 12. Deformation of the contracted skeletal muscle. At the be-
ginning, lose bottom part of the muscle contracts most. After a while,
the muscle reaches an equilibrium. For the simulations, 3000 time steps
where used. We plotted the steps 300, 1205, 2111 and 2866.

Figure 13. The color indicates the contraction force, generated by the
two state model. The last plot shows the equilibrium of the system.





Conclusion

If this thesis was a movie, it would have an open ending. After one-hundred
pages of theory, pictures and models, a stable and fast numerical simulation
method is still missing. No happy end, yet.

On the theoretical side, we have presented a derivation for the conserva-
tive part from the cross-bridge model. This could be a foundation for the
development of variational integrators for the complete system.

In the conservative case, the partial Liouville equation with constraints co-
incides with the transport equations for cross-bridges. This opens a door
to new numerical questions: How can we treat a mixture of a Lagrangian
system and a constrained Liouville equation numerically? Can we develop
symplectic or variational integrators for these systems?

For the non-conservative case, we have identified a stiff behavior of the cross-
bridge model and discovered that the upwind method is a dissipative, but
more stable, numerical scheme for cross-bridges.
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Appendix A

Differential Calculus
on Banach Spaces

We recall basic definition for differentiation of nonlinear maps between Ba-
nach spaces.

Definition A.1 (Gâteaux- and Fréchet-differentiable, [Wer18, Definition
III.5.1]). Let X and Y be normed vector spaces, U ⊆ X open and f : U → Y
be a map.

(i) f is called Gâteaux-differentiable at x0 ∈ U , if a continuous linear
operator T : X → Y exists, with

lim
h→0

f(x0 + hv)− f(x0)

h
= Tv, for all v ∈ X.(A.1)

(ii) f is called Fréchet-differentiable at x0 ∈ U , if the convergence in Equa-
tion A.1 is uniform with respect to v ∈ X with ‖v‖X ≤ 1.

(iii) f is called Gâteaux- resp. Fréchet-differentiable on U , if f is Gâteaux-
resp. Fréchet-differentiable at all points x0 ∈ U .
The operator T obtained as a limit in Equation A.1 depends on x0 and
is denoted by

Df(x0) : X → Y.

We call

Df : U → L(X,Y )

the Gâteaux- resp. Fréchet-differential of f .
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Remark A.2 (Nonlinear spaces). The spaces X and Y can also be replaced
by Banach manifolds. In this case, the Fréchet-differential is a map

Df(x0) : Tx0X → Tf(x0)Y

and we call
Df : TX → TY

the differential of f . In the linear case, the isomorphism Tx0X
∼= X is used.

Remark A.3 (Notation of directional derivatives). We will use the syntax

Df(x0)[v] :=
(
Df(x0)

)
(v).

To clearly separate points x0 ∈ X and directions v ∈ Tx0X
∼= X.

Sometimes we insert a vector field v : X → TX as directions and omit the
points, i.e.

Df [v] : X → R : x 7→ Df(x)[v(x)].

Theorem A.4 (Stationary Points). Let U ⊆ B be an open set, f : U →
R Gâteaux-differentiable and let x0 ∈ B be a local extremal point, then
Df(x0) = 0.



Appendix B

Tools from Differential
Geometry

1. Tangent Vectors as Velocities

Remark B.1 (Tangent Vectors). LetM be a smooth manifold and p ∈M
a point and choose a local chart h : U → Rm, where U ⊆M is an open set
containing the point p.

We say that two smooth curves

γ1, γ2 : (−ε, ε)→M
have first order contact at (0, p), if they hit the point p at the same time
t = 0, i.e.

γ1(0) = γ2(0) = p

and if the velocity at t = 0 coincides in local coordinates, i.e.

D(h ◦ γ1)(0) = D(h ◦ γ1)(0).

A tangent vector η ∈ TM is an equivalence class of curves which have all
first order contact at (0, p).

2. Tensors and Two-Point Tensors

The deformation gradient F = Dϕ : TB → TS is one of the central objects
in the study of elasticity. A clear language is useful in order to talk about
tensors in elasticity. Like the deformation tensor, many tensors in elasticity
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are not defined over only material or spatial spaces, but over both spaces at
the same time. Therefore, we will shortly recall a few basics about two-point
tensors from [MH83, section 1.4].

Using this language, we can define the divergence, contraction and double
contraction of tensors.

Two-point tensors are objects with p+q+l+m indices, therefore this section
is a bit technical and it can be quite confusing.

Remark B.2 (Jumping over “→”). A map

T̃ : V → V.

defines an associated
(

1
1

)
-type tensor

T : V ∗ × V → R : (α, v) 7→ α(T̃ v).

Or, with the concept of tensor product spaces, we can say

T ∈
(
V ∗ × V

)∗ ∼= V ⊗ V ∗.(B.1)

An application of V = V ∗∗ also allows us to apply the same trick for maps
like

T̃ : V ∗ → V ∗,

in order to construct a corresponding map

T : V ∗ × V ∗∗ ∼= V ∗ × V → R.

Remark B.3 (The type of a multilinear map). For a general multi-linear
map T , we can always find an associated map of the from

T : (V ∗)p × V q → R.

Hence

T ∈ (V )⊗p ⊗ (V ∗)⊗q.

Elements of this space are called tensors of type
( p
q

)
.

Definition B.4 (Two-point tensor and tensor fields). A two-point tensor

of type
(
p l
q m

)
at X ∈ B over a mapping ϕ : B → S is a multilinear mapping

T : (T ∗XB)p × (TXB)q × (T ∗xS)l × (TxS)m → R,

where x = ϕ(X).

A two-point tensor field T smoothly assigns a two-point tensor T (X) to each
material point X ∈ B.

Using terminology from differential geometry we notate this as a section or
a tensor field

T : B → (TB)p ⊗ (T ∗B)q ⊗ (TS)l ⊗ (T ∗S)m.
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Note that we have taken the dual spaces, like in Equation B.1.

Remark B.5 (The deformation gradient as a two-point tensor field). In a
similar fashion to Remark B.2, we can transform the deformation gradient

Dϕ(X) : TXB → TxS, with x = ϕ(X),

into
F (X) : TXB × T ∗xS → R : (α,W ) 7→ α(Dϕ(X)[W ]).

Hence the deformation gradient is a two-point tensor of type
(

0 1
1 0

)
and we

can say it is a section

F : B → T ∗B ⊗ TS.(B.2)

Remark B.6 (The first Piola-Kirchhoff stress tensor). For a strain energy
W (Dϕ) the first Piola-Kirchhoff stress tensor is given as

P =
∂W

∂Dϕ
.

In view of Equation B.2 we can interpret the strain energy as a map

W : T ∗B ⊗ TS → R
and the first Piola-Kirchhoff stress tensor is the best linear approximation
of this map (cp. Definition A.1), therefore

P (F ) =
∂W

∂Dϕ
(Dϕ) : T ∗B ⊗ TS → R.

Jumping over the “→” one last time yields a section

P (F ) : B → TB ⊗ T ∗S.
Therefore it is a two-point tensor of type

(
1 0
0 1

)
, which is exactly the opposite

of the deformation tensor.

This is perfect, since we can insert a deformation tensor point-wise to get a
real number. This will be applied in the calculus of variations, where we can
interpret the gradient of a variation as a deformation tensor Dη ∈ TB⊗T ∗S
and define a map

P (F )[Dη] : B → R : X 7→
(
P (F )

)
(X)[Dη(X)].
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