Position-based Dynamics

FOR ODES WITH INEQUALITY CONSTRAINTS

Steffen Plunder
Supervisor: Sara Merino-Aceituno
PDE Afternoon

$\mathrm{W}|\mathrm{W}| \mathrm{T} \mid \mathrm{F}$

VIENNA SCIENCE
AND TECHNOLOGY FUND
10 Nov 2021
universität
wien

Motivation

What I want to do ©

Simulation of epithelial cells

What I want to do ©

Simulation of epithelial cells

But: There are inequality constraints in the model:

- non-overlapping constraints between nuclei cores,
- black line is a chain of links with fixed maximal length.

What I have to do © ©

1. Solve an ODE

$$
\dot{x}=f(x)+\ldots
$$

with (many) inequality constraints

$$
g_{k}(x(t)) \geq 0 \quad \text { for all } k
$$

1. Solve an ODE

$$
\dot{x}=f(x)+\ldots
$$

with (many) inequality constraints

$$
g_{k}(x(t)) \geq 0 \quad \text { for all } k
$$

2. Do it fast...

What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.

What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.
At the same time, I can crash into inequality constraints in real-time...

What I found (while not doing my PhD)

I needed to wait overnight for simulation studies with a model of just 30 cells.
At the same time, I can crash into inequality constraints in real-time...

Computer graphics uses Position-based Dynamics (PBD). Let's try that!

Good news: PBD is very stable!

It has not problems to simulate a stack of objects, like this...

...many mathematically more rigorous methods would lead to jittering and a colapsing stack!

Video of PBD

BAD NEWS...

Position-based Dynamics (PBD) is not a convergent method.

Position-based Dynamics (PBD) is not a convergent method.

The End.

Position-based Dynamics is probably not a convergent method, but very stable and fast. For our application

Position-based Dynamics is probably not a convergent method, but very stable and fast.
For our application

1. numerical error \ll model error

- Visually identical to other numerical methods.

Position-based Dynamics is probably not a convergent method, but very stable and fast.
For our application

1. numerical error \ll model error

- Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.

Position-based Dynamics is probably not a convergent method, but very stable and fast.
For our application

1. numerical error \ll model error

- Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.

BAD NEws?

Position-based Dynamics is probably not a convergent method, but very stable and fast.
For our application

1. numerical error \ll model error

- Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

BAD NEws?

Position-based Dynamics is probably not a convergent method, but very stable and fast.
For our application

1. numerical error \ll model error

- Visually identical to other numerical methods.

2. Speed: Our simulations are almost 100 times faster now.
3. Stability: No cases anymore in which an internal solver fails.
4. Simplicity: It is super easy to implement (even for PDEs).

Goal (work in progress):
Find rigorous mathematical arguments to justify use of Position-based Dynamics (PBD).

Overview of this talk

1. Position-based Dynamics for first order systems,
2. Filippov ODEs and numerical integration,
3. ...attempts to get error bounds.

Position-based Dynamics for first order SYSTEMS

We consider N particles (in 2D) with radius $R=1$ and with positions $\boldsymbol{X}=\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{R}^{2 N}$.

[^0]We consider N particles (in 2D) with radius $R=1$ and with positions $\boldsymbol{X}=\left(X_{1}, \ldots, X_{N}\right) \in \mathbb{R}^{2 N}$. We consider this complementarity system

$$
\begin{cases}\dot{X}_{i}=f_{i}(\boldsymbol{X})+\sum_{k=1}^{m} \lambda_{k} \nabla g_{k}(\boldsymbol{X}) & \text { for all } i=1, \ldots, N, \\ g_{k} \geq 0, \quad \lambda_{k} \geq 0 \quad \text { and } \quad g_{k} \lambda_{k}=0 & \text { for all } k=1, \ldots, m, \\ X_{i}(0)=X_{i}^{\text {init }} & \text { for all } i=1, \ldots, N\end{cases}
$$

where

$$
g_{k}(X):=\left\|X_{i}-X_{j}\right\|-2
$$

are the $m=\binom{2}{N}$ constraints for non-overlapping spheres. ${ }^{1}$

$$
{ }^{1} k=1, \ldots, m \text { corresponds to all pairs }\{1,2\},\{1,3\}, \ldots,\{N-1, N\} .
$$

Incredients of Position-based Dynamics

1. Explicit Euler: Numerical flow map

$$
\Phi_{h}^{f}(\boldsymbol{X})=x+h f(\boldsymbol{X})
$$

1. Explicit Euler: Numerical flow map

$$
\Phi_{h}^{f}(\boldsymbol{X})=x+h f(X)
$$

2. Proximal maps: For a given constraint g_{k}, the proximal operator is

$$
\operatorname{prox}^{g_{k}}(x)=\underset{y \in \mathbb{R}^{2 N}, g_{k}(y) \geq 0}{\operatorname{argmin}}\|x-y\|
$$

1. Explicit Euler: Numerical flow map

$$
\Phi_{h}^{f}(X)=x+h f(X)
$$

2. Proximal maps: For a given constraint g_{k}, the proximal operator is

$$
\operatorname{prox}^{g_{k}}(x)=\underset{y \in \mathbb{R}^{2 N}, g_{k}(y) \geq 0}{\operatorname{argmin}}\|x-y\|
$$

Numerical flow map of PBD

$$
\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})=\operatorname{prox}^{g_{m}} \circ \cdots \circ \operatorname{prox}^{g_{1}} \circ \Phi_{h}^{f}(\mathbf{X})
$$

Hence, numerical solution is

$$
\boldsymbol{X}^{n+1}=\Phi_{h}^{\mathrm{PBD}}\left(\boldsymbol{X}^{n}\right)
$$

PBD (with large Δt) 1. initial state

PBD with large Δt
4. Fix overlap $(3,2)$

PBD with large \triangle 2. Euler step

PBD with large Δt

Computational budget

Computation of $\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})$ is very fast,

Computation of $\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})$ is very fast,
\Rightarrow we can choose very small step-size h,

Computation of $\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})$ is very fast,
\Rightarrow we can choose very small step-size h,
\Rightarrow within each step the constraint violation remains small.

Computation of $\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})$ is very fast,
\Rightarrow we can choose very small step-size h,
\Rightarrow within each step the constraint violation remains small.

But, we have no error bounds for the accuracy of the Lagrangian multipliers!

Computational budget

Computation of $\Phi_{h}^{\mathrm{PBD}}(\boldsymbol{X})$ is very fast,
\Rightarrow we can choose very small step-size h,
\Rightarrow within each step the constraint violation remains small.

But, we have no error bounds for the accuracy of the Lagrangian multipliers!

Time-stepping
with internal LCP solver

Position-based Dynamics

(very small) time step h
one iteration to estimate
$\lambda_{1}, \ldots, \lambda_{m}$

Filippov ODEs and numerical integration

Numerics 101

Consider $\dot{x}=f(x)$.

Consider $\dot{x}=f(x) \quad$ Exact flow: $\varphi_{t}(x)=e^{t} x$.

Consider $\dot{x}=f(x) \quad$ Exact flow:
$\varphi_{t}(x)=e^{t} x$.

Numerical flow (explicit Euler): $\Phi_{h}(x)=x+h f(x)$.

Numerics 101

Consider $\dot{x}=f(x) . \quad$ Exact flow:

$$
\varphi_{t}(x)=e^{t} x
$$

Numerical flow (explicit Euler): $\Phi_{h}(x)=x+h f(x)$.

- Consistency:
$\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2}$.

Consider $\dot{x}=f(x) . \quad$ Exact flow:

$$
\varphi_{t}(x)=e^{t} x
$$

Numerical flow (explicit Euler):
$\Phi_{h}(x)=x+h f(x)$.

- Consistency:
$\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2}$.
- Stability:

$$
\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+L h)\|x-y\| .
$$

Consider $\dot{x}=f(x) . \quad$ Exact flow:
Numerical flow (explicit Euler):

$$
\varphi_{t}(x)=e^{t} x
$$

$$
\Phi_{h}(x)=x+h f(x)
$$

- Consistency:

$\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2}$.

- Stability:

$$
\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+L h)\|x-y\| .
$$

- Convergence: For fixed $T>0$,

$$
\left\|\varphi_{n h}(x)-\Phi_{h}^{n}(x)\right\| \leq M h \quad \text { for all } n, h \text { with } n h<T
$$

Numerics 101

Consider $\dot{x}=f(x)$.

$$
\begin{aligned}
& \text { Exact flow: } \\
& \varphi_{t}(x)=e^{t} x
\end{aligned}
$$

Numerical flow (explicit Euler):
 $\Phi_{h}(x)=x+h f(x)$.

■ Consistency:

$$
\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2} .
$$

- Stability:

$$
\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+L h)\|x-y\| .
$$

■ Convergence: For fixed $T>0$,
$\left\|\varphi_{n h}(x)-\Phi_{h}^{n}(x)\right\| \leq M h \quad$ for all n, h with $n h<T$.

Figure 3: Lady Windermere's fan.

Numerics 101

Consider $\dot{x}=f(x)$.

$$
\begin{aligned}
& \text { Exact flow: } \\
& \varphi_{t}(x)=e^{t} x
\end{aligned}
$$

Numerical flow (explicit Euler):
$\Phi_{h}(x)=x+h f(x)$.

- Consistency:

$$
\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2} .
$$

- Stability:
$\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+L h)\|x-y\|$.
■ Convergence: For fixed $T>0$,
$\left\|\varphi_{n h}(x)-\Phi_{h}^{n}(x)\right\| \leq M h \quad$ for all n, h with $n h<T$.

Figure 3: Lady Windermere's fan.

A typical result is consistency + stability \Rightarrow convergence.

In which sense do exact solutions even exists?

Example:

$$
\begin{gathered}
\dot{y}=-1+\lambda \\
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0
\end{gathered}
$$

Discontinious right-HAND sides

Example:

$$
\begin{gathered}
\dot{y}=-1+\lambda \\
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0 .
\end{gathered}
$$

(Think of y as the height of the apple over the ground.)

Discontinious right-HAND sides

Example:

$$
\begin{gathered}
\dot{y}=-1+\lambda, \\
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0 .
\end{gathered}
$$

On the ground, the complementary condition implies (if \dot{y} exists):
(Think of y as the height of the apple over the ground.) Here:
$\lambda= \begin{cases}0 & \text { before impact }, \\ 1 & \text { after impact. }\end{cases}$

$$
\begin{aligned}
0 & =\dot{y} \lambda+y \dot{\lambda} \\
& =(-1+\lambda) \lambda .
\end{aligned}
$$

Discontinious right-HAND sides

Example:

$$
\dot{y}=-1+\lambda,
$$

$$
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0
$$

(Think of y as the height of the apple over the ground.) Here:

...or as Filippov ODE:

$$
\dot{y} \in \begin{cases}\{-1\} & y>0 \\ {[-1,0]} & y=0 \\ \{0\} & y<0\end{cases}
$$

$\lambda= \begin{cases}0 & \text { before impact, } \\ 1 & \text { after impact. }\end{cases}$

Discontinious right-HAND sides

Example:

$$
\dot{y}=-1+\lambda,
$$

(Think of y as the height of the apple over the ground.) Here:

...or as Filippov ODE:

$$
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0
$$

$$
\dot{y} \in \begin{cases}\{-1\} & y>0 \\ {[-1,0]} & y=0 \\ \{0\} & y<0\end{cases}
$$

- Existence theory,
- allows extension of ODE to infeasible positions.

Does numerical integration work for such systems?

Example: Sliding case

$$
\begin{aligned}
& f^{+}:=\binom{1}{-1} \quad f^{-}:=\binom{2}{1} \\
& \dot{x} \in \begin{cases}f^{+} & x_{2}>0 \\
\overline{\operatorname{co}}\left(\left\{f^{+}, f^{-}\right\}\right) & x_{2}=0 \\
f^{-} & x_{2}<0\end{cases}
\end{aligned}
$$

$$
\overline{\mathrm{co}}\{\ldots\} \text { is the closure of the }
$$ convex hull.

Discontinious right-hand sides: The sliding case

Example: Sliding case

$$
\begin{aligned}
& f^{+}:=\binom{1}{-1} \quad f^{-}:=\binom{2}{1} \\
& \dot{x} \in \begin{cases}f^{+} & x_{2}>0 \\
\overline{\mathrm{co}}\left(\left\{f^{+}, f^{-}\right\}\right) & x_{2}=0 \\
f^{-} & x_{2}<0\end{cases}
\end{aligned}
$$

$\overline{\mathrm{co}}\{\ldots\}$ is the closure of the convex hull.

Challenge in the numerical analysis

- How fast do we enter the infeasible regions?

Challenge in the numerical analysis

- How fast do we enter the infeasible regions?
- What are the chain reactions of

$$
P(\boldsymbol{X}):=\operatorname{prox}^{g_{m}} \mathrm{o} \cdots \operatorname{oprox}^{g_{1}}(\boldsymbol{X}) .
$$

Challenge in the numerical analysis

- How fast do we enter the infeasible regions?
- What are the chain reactions of

$$
P(\boldsymbol{X}):=\operatorname{prox}^{g_{m}} \circ \cdots \operatorname{prox}^{g_{1}}(\boldsymbol{X})
$$

■ How likely are bad cases?

- I want to find a global error bound.

Kissing unit discs

To analyse

$$
P(\boldsymbol{X}):=\operatorname{prox}^{g_{m}} \circ \cdots \circ \operatorname{prox}^{g_{1}}(\boldsymbol{X})
$$

To analyse

$$
P(X):=\operatorname{prox}^{g_{m}} \circ \cdots \circ \operatorname{prox}^{g_{1}}(X)
$$

we consider the graph

$$
\begin{aligned}
G & =(V, E) \quad \text { with } \\
V & =\{1, \ldots, N\}, \\
E & =\left\{(i, j) \mid \text { if }\left\|X_{i}-X_{j}\right\|<2 R\right\} .
\end{aligned}
$$

enumerated contacts

To analyse

$$
P(\boldsymbol{X}):=\operatorname{prox}^{g_{m}} \circ \cdots \circ \operatorname{prox}^{g_{1}}(\boldsymbol{X})
$$

we consider the graph

$$
\begin{aligned}
G & =(V, E) \quad \text { with } \\
V & =\{1, \ldots, N\}, \\
E & =\left\{(i, j) \mid \text { if }\left\|X_{i}-X_{j}\right\|<2 R\right\} .
\end{aligned}
$$

dual of unit disc graph

Lemma

Given a state $X \in \mathbb{R}^{2 N}$ such that

$$
g_{k}(\boldsymbol{X}) \geq 0-\varepsilon \quad \text { for all } k
$$

then

$$
g_{k}(P(\boldsymbol{X})) \geq 0-C \varepsilon \quad \text { for all } k
$$

where the constant C depends on properties of the unit disk graph.

Lemma

Given a state $X \in \mathbb{R}^{2 N}$ such that

$$
\begin{gathered}
g_{k}(\boldsymbol{X}) \geq 0-\frac{R}{4} \text { for all } k \\
\sum_{k} \max \left(-g_{k}(\boldsymbol{X}), 0\right) \geq C \sum_{k} \max \left(-g_{k}(P(\boldsymbol{X})), 0\right)
\end{gathered}
$$

where the constant C depends on properties of the unit disk graph.
(But I have no satisfying bound for C yet.)

Outlook

- I cannot prove consistency (yet):

$$
\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2} .
$$

Outlook

- I cannot prove consistency (yet):

$$
\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2} .
$$

- Proving stability in this sense is possible:

$$
\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+\tilde{C} L h)\|x-y\| .
$$

- I cannot prove consistency (yet):

$$
\left\|\varphi_{h}(x)-\Phi_{h}(x)\right\| \leq C h^{2} .
$$

- Proving stability in this sense is possible:

$$
\left\|\Phi_{h}(x)-\Phi_{h}(y)\right\| \leq(1+\tilde{C} L h)\|x-y\| .
$$

■ Maybe I can only get this kind of convergence: For fixed $T>0$,

$$
\left\|\varphi_{n h}(x)-\Phi_{h}^{n}(x)\right\| \leq C+M h \quad \text { for all } n, h \text { with } n h<T
$$

References I

A. F. Filippov.

Differential Equations with Discontinuous Righthand Sides, volume 18 of Mathematics and Its Applications.
Springer Netherlands, Dordrecht, 1988.
奢
E. Hairer, S. P. Nørsett, and Gerhard Wanner.

Solving Ordinary Differential Equations I: Nonstiff Problems.
Number 8 in Springer Series in Computational Mathematics. Springer, Heidelberg ; London, 2nd rev. ed edition, 2009.
Remco I. Leine and Henk Nijmeijer.
Dynamics and Bifurcations of Non-Smooth Mechanical Systems, volume 18 of Lecture Notes in Applied and Computational Mechanics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
國 Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan Jeschke, and Matthias Müller.
Small steps in physics simulation.
In Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation SCA '19, pages 1-7, Los Angeles, California, 2019. ACM Press.

References II

國 Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Representation, 18(2):109-118, April 2007.
-
Peter Wriggers.
Computational Contact Mechanics.
Springer-Verlag, Berlin Heidelberg, second edition, 2006.

Thank you for your attention!

- Non-smooth contact dynamics:

Solve a nonlinear optimisation problem in each time-step...

- Smoothening, Repulsive potentials, Penalty method, Discrete Element method, ... Replace non-smooth right-hand side with a smooth approximation or use alternative model.
\rightarrow Might be more physical, but also leads to very stiff systems.
- Implicit methods:

Use large time-steps but a nonlinear solve which usually also predicts the collision response.

- Event time methods:

Predict time of collision and compute correct response exactly.
It is very hard to be faster and simpler than PBD, but these methods above are more rigorous and backed by decades of experience.

Example:

$$
\begin{gathered}
\dot{y}=-1+\lambda \\
g(y)=y \geq 0, \quad \lambda \geq 0, \quad y \lambda=0 .
\end{gathered}
$$

Consider a state $y\left(t^{*}\right)=0$.
Then, the complementary condition implies (if \dot{y} exists):

$$
\begin{aligned}
0 & =\dot{y} \lambda+y \dot{\lambda} \\
& =(-1+\lambda) \lambda .
\end{aligned}
$$

Hence,

$$
\lambda\left(t^{*}\right)=1 .
$$

[^0]: ${ }^{1} k=1, \ldots, m$ corresponds to all pairs $\{1,2\},\{1,3\}, \ldots,\{N-1, N\}$.

