Finite Element Exterior Calculus

A VERY INCOMPLETE INTRODUCTION
Steffen Plunder
PhD Seminar
16 JULY 2019

MOTIVATION

We want to solve (more or less)

We want to solve equations like

$$
\left(d^{*} d+d d^{*}\right) u=f
$$

using mixed finite elements for

$$
(u, \sigma=\mathrm{d} u)
$$

$\triangle u=\lambda u$, STRONG FORMULATION

$\lambda_{1}=1.94$

$\lambda_{2}=2.02$

$\Delta u=\lambda u$, MIXED FORMULATION

$$
\begin{array}{lll}
\lambda_{1}=0 & \lambda_{2}=0.617 & \lambda_{3}=0.658
\end{array}
$$

The ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

$$
\begin{array}{cccc}
V^{k-1} \xrightarrow{d} & V^{k} \xrightarrow{d} V^{k+1} \\
\downarrow^{\pi_{k-1}} & & \downarrow^{\pi_{k}} & \\
V_{h}^{k-1} \xrightarrow{d} & \downarrow_{h}^{\pi_{k+1}} \\
V_{h}^{k} & \mathrm{~d} & V_{h}^{k+1}
\end{array}
$$

The ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

$$
\begin{array}{cccc}
V^{k-1} \xrightarrow{d} & V^{k} \xrightarrow{d} V^{k+1} \\
\downarrow^{\pi_{k-1}} & & \downarrow^{\pi_{k}} & \\
V_{h}^{k-1} \xrightarrow{d} & \downarrow_{h}^{\pi_{k+1}} \\
V_{h}^{k} & \mathrm{~d} & V_{h}^{k+1}
\end{array}
$$

Three important properties for consistency and stability!

The ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

$$
\begin{array}{cccc}
V^{k-1} \xrightarrow{d} & V^{k} \xrightarrow{d} V^{k+1} \\
\downarrow^{\pi_{k-1}} & & \downarrow^{\pi_{k}} & \\
V_{h}^{k-1} \xrightarrow{\pi_{k+1}} & & V_{h}^{k} \xrightarrow{d} & V_{h}^{k+1}
\end{array}
$$

Three important properties for consistency and stability!
■ approximation property: $\operatorname{dist}\left(V_{h}^{l}, w\right) \rightarrow 0$ for all $w \in V^{l}$

The ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

$$
\begin{array}{cccc}
V^{k-1} \xrightarrow{d} & V^{k} \xrightarrow{d} V^{k+1} \\
\downarrow^{\pi_{k-1}} & & \downarrow^{\pi_{k}} & \\
V_{h}^{k-1} \xrightarrow{\pi_{k+1}} & V_{h}^{k} \xrightarrow{d} & V_{h}^{k+1}
\end{array}
$$

Three important properties for consistency and stability!
■ approximation property: $\operatorname{dist}\left(V_{h}^{l}, w\right) \rightarrow 0$ for all $w \in V^{l}$
■ subcomplex property: $d V^{l} \subseteq V^{l+1}$

The ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

$$
\begin{array}{cccc}
V^{k-1} \xrightarrow{d} & V^{k} \xrightarrow{d} V^{k+1} \\
\downarrow^{\pi_{k-1}} & & \downarrow^{\pi_{k}} & \\
V_{h}^{k-1} \xrightarrow{\pi_{k+1}} & V_{h}^{k} \xrightarrow{d} & V_{h}^{k+1}
\end{array}
$$

Three important properties for consistency and stability!
■ approximation property: $\operatorname{dist}\left(V_{h}^{l}, w\right) \rightarrow 0$ for all $w \in V^{l}$
■ subcomplex property: $d V^{l} \subseteq V^{l+1}$
■ bounded projection property: π_{h}^{l} is bounded.

CONTENTS

1 Motivation
2. Abstract Hilbert complexes

3 Example for Hodge Laplace equations and relatives

4 Discretisation of Hilbert complexes

Abstract Hilbert complexes

A Hilbert (cochain) complex

... is a sequence of Hilbert spaces W^{k} and linear operators ${ }^{1} d^{k}$

$$
\ldots \xrightarrow{\mathrm{d}^{k-2}} W^{k-1} \xrightarrow{\mathrm{~d}^{k-1}} W^{k} \xrightarrow{\mathrm{~d}^{k}} W^{k+1} \xrightarrow{\mathrm{~d}^{k+1}} \ldots
$$

such that

$$
\operatorname{Im}\left(d^{k-1}\right) \subseteq \operatorname{Ker}\left(d^{k}\right)
$$

${ }^{1}$ unbounded, closed, densely defined

A Hilbert (COCHAIN) COMPLEX

... is a sequence of Hilbert spaces W^{k} and linear operators $d^{1 k}$

$$
\ldots \xrightarrow{d^{k-2}} w^{k-1} \xrightarrow{d^{k-1}} W^{k} \xrightarrow{d^{k}} W^{k+1} \xrightarrow{d^{k+1}} \ldots
$$

such that

$$
\operatorname{Im}\left(d^{k-1}\right) \subseteq \operatorname{Ker}\left(d^{k}\right) .
$$

■ Important property: $\mathrm{d} \circ \mathrm{d}=0$.
${ }^{1}$ unbounded, closed, densely defined

A Hilbert (cochain) complex

... is a sequence of Hilbert spaces W^{k} and linear operators $d^{1} d^{k}$

$$
\ldots \xrightarrow{d^{k-2}} W^{k-1} \xrightarrow{d^{k-1}} W^{k} \xrightarrow{d^{k}} W^{k+1} \xrightarrow{d^{k+1}} \ldots
$$

such that

$$
\operatorname{Im}\left(d^{k-1}\right) \subseteq \operatorname{Ker}\left(d^{k}\right) .
$$

■ Important property: $\mathrm{d} \circ \mathrm{d}=0$.
■ There is a norm $\|\cdot\|_{V}$, s.t. $d^{k-1}: V^{k-1} \rightarrow V^{k}$ is bounded.

DUAL SPACES

Recall: For a vector space W, the dual space is

$$
W^{*}:=\{\omega: V \rightarrow \mathbb{R} \mid \omega \text { is linear and bounded. }\} .
$$

DUAL SPACES

Recall: For a vector space W, the dual space is

$$
W^{*}:=\{\omega: V \rightarrow \mathbb{R} \mid \omega \text { is linear and bounded. }\} .
$$

For

$$
V \xrightarrow{A} W
$$

we get the adjoint map

$$
V^{*} \stackrel{A^{*}}{\leftrightarrows} W^{*}
$$

via

$$
A^{*}(\omega): V \rightarrow \mathbb{R}: v \mapsto \omega(A(v))
$$

The dual chain complex

Turing around arrows is fun ${ }^{2}$

${ }^{2}$ We use $d_{l}:=\left(d^{l}\right)^{*}$.

The dual chain complex

Turing around arrows is fun ${ }^{2}$

Be careful: The adjoint of an unbounded operator has a different domain!

$$
{ }^{2} \text { We use } d_{l}:=\left(d^{l}\right)^{*} .
$$

ABSTRACT HODGE LAPLACE OPERATOR

We define

$$
L^{k}:=d^{*} d+d d^{*}: W^{k} \rightarrow W^{k}
$$

ABSTRACT HODGE LAPLACE OPERATOR

We define

$$
L^{k}:=d^{*} d+d d^{*}: W^{k} \rightarrow W^{k}
$$

The harmonic forms

$$
\operatorname{Ker}\left(L^{k}\right)=\operatorname{Ker}\left(d^{k}\right) \cap \operatorname{Ker}\left(d_{k-1}\right)
$$

turn out to be crucial.

THE Hodge Laplace equation

Never forget the kernel! We need to ensure existence of solutions

$$
L^{k} u=f-\operatorname{Pr}_{\operatorname{Ker}\left(L^{k}\right)}(f)
$$

and uniqueness

$$
u \perp \operatorname{Ker}\left(L^{k}\right) .
$$

THE Hodge Laplace equation

Never forget the kernel! We need to ensure existence of solutions

$$
L^{k} u=f-\operatorname{Pr}_{\operatorname{Ker}\left(L^{k}\right)}(f)
$$

and uniqueness

$$
u \perp \operatorname{Ker}\left(L^{k}\right) .
$$

Are there any interesting examples?

THREE NUMBERS $\neq \mathrm{VECTORS} \neq \mathrm{CO}$-VECTORS

Three numbers

$$
(1, o, o)
$$

THREE NUMBERS $\neq \mathrm{VECTORS} \neq \mathrm{CO}$-VECTORS

Three numbers

$$
(1,0,0)
$$

might represent a direction

$$
\dot{\gamma} \in T \mathbb{R}^{3}
$$

THREE NUMBERS \neq VECTORS \neq CO-VECTORS

Three numbers

$$
(1,0,0)
$$

might represent a direction

$$
\dot{\gamma} \in T \mathbb{R}^{3}
$$

or an length element

$$
\mathrm{d} x \in \Lambda^{1} \mathbb{R}^{3}
$$

THREE NUMBERS $\neq \mathrm{VECTORS} \neq \mathrm{CO}-\mathrm{VECTORS}$

Three numbers

$$
(1, o, o)
$$

might represent a direction

$$
\dot{\gamma} \in T \mathbb{R}^{3}
$$

or an length element

$$
\mathrm{d} x \in \Lambda^{1} \mathbb{R}^{3}
$$

or an area element

$$
\mathrm{d} x \wedge \mathrm{~d} y \in \Lambda^{2} \mathbb{R}^{3}
$$

WORKING DEFINITION OF ALTERNATING FORMS

We define

$$
\operatorname{Alt}^{k}(V)=\left\{\omega: V^{k} \rightarrow \mathbb{R} \mid \omega \text { is linear and alternating }\right\} .
$$

WORKING DEFINITION OF ALTERNATING FORMS

We define

$$
\operatorname{Alt}^{k}(V)=\left\{\omega: V^{k} \rightarrow \mathbb{R} \mid \omega \text { is linear and alternating }\right\} .
$$

Examples ${ }^{3}$

$$
\mathrm{D} \phi(p) \in \operatorname{Alt}^{1}\left(\mathbb{R}^{n}\right) \cong\left(\mathbb{R}^{n}\right)^{*} \quad \operatorname{det} \in \operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)
$$

$$
{ }^{3} \phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \text {, i.e. } \phi(p) \in \operatorname{Alt}^{\circ}\left(\mathbb{R}^{n}\right)
$$

WORKING DEFINITION OF ALTERNATING FORMS

We define

$$
\operatorname{Alt}^{k}(V)=\left\{\omega: V^{k} \rightarrow \mathbb{R} \mid \omega \text { is linear and alternating }\right\} .
$$

Examples ${ }^{3}$

$$
\mathrm{D} \phi(p) \in \operatorname{Alt}^{1}\left(\mathbb{R}^{n}\right) \cong\left(\mathbb{R}^{n}\right)^{*} \quad \operatorname{det} \in \operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)
$$

Alt ${ }^{k}(V) \approx$ things that measure k-dimensional objects.

$$
{ }^{3} \phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \text {, i.e. } \phi(p) \in \mathrm{Alt}^{0}\left(\mathbb{R}^{n}\right)
$$

WORKING DEFINITION OF DIFFERENTIAL FORMS

A smooth field of these 'measuring devices' is called a differential form

$$
\Lambda^{k}(\Omega):=C^{\infty}\left(\Omega, \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right)\right) .
$$

WORKING DEFINITION OF DIFFERENTIAL FORMS

A smooth field of these 'measuring devices' is called a differential form

$$
\Lambda^{k}(\Omega):=C^{\infty}\left(\Omega, \operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right)\right)
$$

We can define a derivative on these spaces via

$$
\mathrm{d} \omega:=\operatorname{skew}(\mathrm{D} \omega), \quad \omega \in \Lambda^{k}(\Omega)
$$

The de Rham (co-Chain) complex

$$
C^{\infty}(\Omega) \xrightarrow{\text { grad }} C^{\infty}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{\text { curl }} C^{\infty}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{\text { div }} C^{\infty}(\Omega)
$$

The de Rham (co-Chain) complex

The de Rham (co-chain) complex

The maps between the rows are not trivial!

The L²-de Rham (chain) complex

$$
\begin{aligned}
& L^{2}(\Omega) \xrightarrow{\left(\mathrm{grad}, H^{1}\right)} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{(\text { curl }, H(\text { curl }))} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \xrightarrow{(\text { div, } H(\text { div })} L^{2}(\Omega) \\
& \downarrow \downarrow \downarrow \\
& L^{2}(\Omega)\left(\overleftarrow{(- \text { div, }, \dot{H}(\text { div }))} L^{2}\left(\Omega, \mathbb{R}^{3}\right) \underset{(\text { curl }, \dot{H}(\text { curl }))}{ } L^{2}\left(\Omega, \mathbb{R}^{3}\right) \underset{\left(- \text { grad, } \mathcal{H}^{1}\right)}{\overleftarrow{ }} L^{2}(\Omega)\right.
\end{aligned}
$$

The L²-de Rham (Chain) complex

Examples

■ $L^{0}=-\operatorname{div} g r a d+$ Neumann BC.

The L^{2}-de Rham (chain) complex

Examples

■ $L^{0}=-\operatorname{div}$ grad + Neumann BC.
■ $L^{1}=$ curl curl - grad div + magnetic BC.

The L^{2}-de Rham (chain) complex

Examples

■ $L^{0}=-\operatorname{div}$ grad + Neumann BC.
■ $L^{1}=$ curl curl - grad div + magnetic BC.
$■ L^{2}=$ curl curl - grad div + electric BC.

The L^{2}-de Rham (chain) complex

Examples

■ $L^{0}=-\operatorname{div}$ grad + Neumann BC.
■ $L^{1}=$ curl curl - grad div + magnetic BC.
■ $L^{2}=$ curl curl - grad div + electric BC.
■ $L^{3}=-$ div grad + Dirichlet BC.

СоноMOLOGY

The cohomology spaces

$$
\mathcal{H}^{k}:=\operatorname{Ker}\left(d^{k}\right) / \operatorname{Im}\left(d^{k-1}\right)
$$

play a central role in homological algebra.

COHOMOLOGY

The cohomology spaces

$$
\mathcal{H}^{k}:=\operatorname{Ker}\left(d^{k}\right) / \operatorname{Im}\left(d^{k-1}\right)
$$

play a central role in homological algebra.

■ If $\mathcal{H}^{k}=\{\mathbf{0}\}$, then we find a 'potential'

$$
\mathrm{d} \sigma=0 \quad \Rightarrow \quad \sigma=\mathrm{d} u
$$

for some $u \in V^{k-1}$.

WHY DO WE CARE?

The cohomology spaces are a topological invariants!

WHY DO WE CARE?

The cohomology spaces are a topological invariants!

WhY do we care?

The cohomology spaces are a topological invariants!

$$
\operatorname{dim}\left(\mathcal{H}^{k}\right) \approx k \text {-dim holes of the domain. }
$$

WhY do we care?

The cohomology spaces are a topological invariants!
$\operatorname{dim}\left(\mathcal{H}^{k}\right) \approx$ k-dim holes of the domain.

$$
\mathcal{H}^{k} \cong \operatorname{Ker}\left(L^{k}\right)
$$

The cohomology spaces are a topological invariants!

$$
\begin{gathered}
\operatorname{dim}\left(\mathcal{H}^{k}\right) \approx \text { k-dim holes of the domain. } \\
\mathcal{H}^{k} \cong \operatorname{Ker}\left(L^{k}\right)
\end{gathered}
$$

Central philosophy of FFEC: Try to preserve geometric invariants!

EXAMPLE FOR HODGE LAPLACE EQUATIONS AND RELATIVES

LAPLACE EQUATION

Using the subcomplex

$$
\mathrm{O} \longrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H^{1}(\Omega, \text { curl })
$$

yields the Laplace equation with Neumann boundary conditions.

LAPLACE EQUATION

Using the subcomplex

$$
\mathrm{O} \longrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H^{1}(\Omega, \text { curl })
$$

yields the Laplace equation with Neumann boundary conditions.

ELASTICITY

There are more interesting Hilbert complexes than just de Rham's complex!

ELASTICITY

There are more interesting Hilbert complexes than just de Rham's complex!

$$
H^{s-1}(\Omega) \otimes \mathbb{V} \xrightarrow{\text { grad }} H^{s-2}(\Omega) \otimes \mathbb{S} \xrightarrow{\text { inc }} H^{s-2}(\Omega) \otimes \mathbb{S} \xrightarrow{\text { div }} H^{s-2}(\Omega) \otimes \mathbb{V}
$$

ELASTICITY

There are more interesting Hilbert complexes than just de Rham's complex!
$H^{s-1}(\Omega) \otimes \mathbb{V} \xrightarrow{\text { grad }} H^{s-2}(\Omega) \otimes \mathbb{S} \xrightarrow{\text { inc }} H^{s-2}(\Omega) \otimes \mathbb{S} \xrightarrow{\text { div }} H^{s-2}(\Omega) \otimes \mathbb{V}$
$\square \operatorname{inc}(F):=\underline{\operatorname{curl}}\left((\underline{\operatorname{curl}}(F))^{T}\right)$

- Mixed formulation of this scary complex are mixed elements for a (displacement, deformation, strain) formulation with strong symmetry.

Hodge wave equation

This beautiful equation

$$
\left(\begin{array}{l}
\dot{\sigma} \\
\dot{v} \\
\dot{\beta}
\end{array}\right)=\left(\begin{array}{ccc}
0 & d & 0 \\
-d & 0 & -d \\
0 & d & 0
\end{array}\right)\left(\begin{array}{l}
\sigma \\
v \\
\beta
\end{array}\right)+\left(\begin{array}{l}
0 \\
f \\
0
\end{array}\right)
$$

can be used to study

$$
\begin{aligned}
\dot{D}-\operatorname{curl} H & =-j, \\
\dot{B}+\operatorname{curl} E & =0, \\
\operatorname{div} B & =0, \\
\operatorname{div} D & =q .
\end{aligned}
$$

DISCRETISATION OF HILBERT COMPLEXES

The ESSENCE OF FEEC

For finite dimensional approximation spaces $V_{h}^{l} \subseteq V^{l}$, we can consider the induced Hilbert complex

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \downarrow^{\pi_{k-1}} \quad \downarrow^{\pi_{k}} \quad \downarrow^{\pi_{k+1}} \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

THE ESSENCE OF FEEC

For finite dimensional approximation spaces $V_{h}^{l} \subseteq V^{l}$, we can consider the induced Hilbert complex

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \downarrow^{\pi_{k-1}} \quad \downarrow^{\pi_{k}} \quad \downarrow^{\pi_{k+1}} \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

Three important properties for consistency and stability!

THE ESSENCE OF FEEC

For finite dimensional approximation spaces $V_{h}^{l} \subseteq V^{l}$, we can consider the induced Hilbert complex

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \downarrow^{\pi_{k-1}} \quad \downarrow^{\pi_{k}} \quad \downarrow^{\pi_{k+1}} \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

Three important properties for consistency and stability!

- approximation property: $\operatorname{dist}\left(V_{h}^{\prime}, w\right) \rightarrow 0$ for all $w \in V^{\prime}$

THE ESSENCE OF FEEC

For finite dimensional approximation spaces $V_{h}^{l} \subseteq V^{l}$, we can consider the induced Hilbert complex

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \downarrow^{\pi_{k-1}} \quad \downarrow^{\pi_{k}} \quad \downarrow^{\pi_{k+1}} \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

Three important properties for consistency and stability!

- approximation property: $\operatorname{dist}\left(V_{h}^{l}, w\right) \rightarrow o$ for all $w \in V^{l}$
- subcomplex property: $d V^{l} \subseteq V^{l+1}$

THE ESSENCE OF FEEC

For finite dimensional approximation spaces $V_{h}^{l} \subseteq V^{l}$, we can consider the induced Hilbert complex

$$
\begin{aligned}
& V^{k-1} \xrightarrow{d} V^{k} \xrightarrow{d} V^{k+1} \\
& \downarrow^{\pi_{k-1}} \quad \downarrow^{\pi_{k}} \quad \downarrow^{\pi_{k+1}} \\
& V_{h}^{k-1} \xrightarrow{d} V_{h}^{k} \xrightarrow{d} V_{h}^{k+1}
\end{aligned}
$$

Three important properties for consistency and stability!

- approximation property: $\operatorname{dist}\left(V_{h}^{l}, w\right) \rightarrow o$ for all $w \in V^{l}$
- subcomplex property: $d V^{l} \subseteq V^{l+1}$
- bounded projection property: π_{h}^{l} is bounded.

COHOMOLOGY IS PRESERVED

Under very mild conditions we get

$$
\mathcal{H}_{h}^{k} \cong \mathcal{H}^{k}
$$

POINTCARÃL' INEQUALITIES

Typical tools from Sobolev theory also pop-up in the more general case of Hilbert complexes

$$
\|z\| \leq c_{P}\|d z\| \quad \text { for all } z \in\left(\operatorname{Ker}\left(d^{k}\right)\right)^{\perp_{V}}
$$

PERIODIC TABLE OF FINITE ELEMENTS

WARM SOUP OR JUST HOT WATER?

■ Unified theory for mixed finite elements for PDEs involving grad, curl, div.

WARM SOUP OR JUST HOT WATER?

■ Unified theory for mixed finite elements for PDEs involving grad, curl, div.

- A construction of new stable finite elements for quasi-incompressible elasticity.

WARM SOUP OR JUST HOT WATER?

■ Unified theory for mixed finite elements for PDEs involving grad, curl, div.

- A construction of new stable finite elements for quasi-incompressible elasticity.
■ Most complexes can be derived with tools from homological algebra.

WARM SOUP OR JUST HOT WATER?

■ Unified theory for mixed finite elements for PDEs involving grad, curl, div.
■ A construction of new stable finite elements for quasi-incompressible elasticity.
■ Most complexes can be derived with tools from homological algebra.

Still... very abstract and damm confusing.

THANKS FOR YOUR ATTENTION!

