

Partially mesoscopic and Lagrangian systems

Steffen Plunder Prof. Bernd Simeon

AG Differential-Algebraische Systeme FB Mathematik TU Kaiserslautern

> March 19, 2019 DESCRIPTOR Paderborn

Numerics

Muscles 2000 Source terms

The principle question

for large values of n, we need statistical ensembles...

Numerics

Muscles 2000 Source terms

The principle question

for large values of n, we need statistical ensembles...

	Euler-Lagrange	Partially mesoscopic	Liouville
	equation	system	equation
unknowns	$r, \dot{r}, q_j, \lambda_j$	$r, \dot{r}, ho(q, t), \lambda(q)$	$\rho(\mathbf{r},\dot{\mathbf{r}},\mathbf{q},t)$

Numerics 000000 /luscles

Source terms

Contents

- 2 Numerical experiments (conservative case)
- 3 Original motivation: mechanics of muscle tissue
- 4 Numerical challenges (non-conservative case)

Numerics 000000 Muscles 2000 Source terms

(3)

Point of Departure

The equation of motion are given by

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (1)$$

$$M_1\ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j), \qquad (2)$$

$$0 = g(r, q_j) - c_j, \quad \text{for all } j = 1, \dots n.$$

The same constraint function g(r,q) for all *n* particles! But c_j depends on the initial conditions.

Numerics

Muscles

Source terms

(3)

Point of Departure

The equation of motion are given by

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (1)$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j),$$
(2)

$$0 = g(r, q_j) - c_j, \text{ for all } j = 1, \dots n.$$

Main assumption

 $\partial_q g$ is invertible and $g \in C^2(\mathbb{R}^{n_r} \times \mathbb{R}^{n_q}; \mathbb{R}^{n_q})$.

Numerics 000000 Muscles 2000 Source terms

(3)

Point of Departure

The equation of motion are given by

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (1)$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j), \qquad (2$$

$$0 = g(r, q_j) - c_j, \text{ for all } j = 1, \dots n.$$

Main assumption

 $\partial_q g$ is invertible and $g \in C^2(\mathbb{R}^{n_r} \times \mathbb{R}^{n_q}; \mathbb{R}^{n_q})$.

 \rightarrow the state of the heavy system (r, \dot{r}) determines at least locally the complete state $(r, \dot{r}, \dots, q_j(r), \dot{q}_j(r, \dot{r}), \dots)!$

Numerics

/luscles

Source terms

Toy example

We consider a very heavy spring

$$L_0(r, \dot{r}) = \frac{1}{2}m_0\dot{r}^2 + \frac{1}{2}\kappa_0r^2$$

and many very light springs

$$\frac{1}{n}L_1(q, \dot{q}) = \frac{1}{2}\frac{m_1}{n}\dot{q}^2 + \frac{1}{2}\frac{\kappa_1}{n}q^2$$

combined as

$$L = L_0 + \frac{1}{n} \sum_{j=1}^n L_1, \quad g(r, q_j) = r - q_j - \underbrace{(r(0) - q_j(0))}_{=:c_i}.$$

Numerics 000000 Muscles 2000 Source terms

Toy example

heavy system

constraint

particles

Steffen Plunder, Prof. Bernd Simeon Partially mesoscopic and Lagrangian systems

Numerics 000000 /luscles

Source terms

Recall: Liouville's equation

If we consider a (arbitrary) Hamilton system H(q, p) and an initial density $\rho_0(q, p)$, then the evolution of

$$\rho(q(t),p(t),t) := \rho_0(q(0),p(0))$$

is determined by the *Liouville equation*

$$0 = \frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial q}\frac{\partial H}{\partial p} - \frac{\partial\rho}{\partial p}\frac{\partial H}{\partial q} + \frac{\partial\rho}{\partial t}.$$

Numerics 000000 /luscles

Source terms

Recall: Liouville's equation

If we consider a (arbitrary) Hamilton system H(q, p) and an initial density $\rho_0(q, p)$, then the evolution of

$$\rho(q(t), p(t), t) \coloneqq \rho_0(q(0), p(0))$$

is determined by the Liouville equation

$$\mathbf{0} = \frac{\mathrm{d}\rho}{\mathrm{d}t} = \frac{\partial\rho}{\partial q}\frac{\partial H}{\partial p} - \frac{\partial\rho}{\partial p}\frac{\partial H}{\partial q} + \frac{\partial\rho}{\partial t}.$$

Numeric 000000 /luscles

Source terms

Liouville equation of the complete system.

The Liouville equation for

$$L := L_0 + L_1, \qquad g = 0$$

replaces also the state of the heavy system (r, \dot{r}) by a density!

Interaction forces between L_0 and L_1 are not accumulated!

Numeric 000000 /luscles

Source terms

Liouville equation of the complete system.

The Liouville equation for

$$L := L_0 + L_1, \qquad g = 0$$

replaces also the state of the heavy system (r, \dot{r}) by a density!

Interaction forces between L_0 and L_1 are not accumulated!

Numerics 000000 Muscles 0000 Source terms 00000

Derivation of the partially mesoscopic description

Derivation of the partially mesoscopic description

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (4)$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j),$$
(5)
$$0 = g(r, q_j) - c_j, \quad \text{for all } j = 1, \dots n.$$
(6)

$$0 = g(r, q_j) - c_j, \quad \text{for all } j = 1, \dots n.$$

Muscles 0000 Source terms 00000

Derivation of the partially mesoscopic description

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \tag{4}$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j),$$
(5)

$$0 = \boxed{g(r,q_j) - c_j}, \quad \text{for all } j = 1, \dots n. \quad (6)$$

$$0 = \partial_r g \dot{r} + \partial_q g \dot{q}. \tag{7}$$

Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (4)$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j),$$
(5)

$$v_1 := -(\partial_q g)^{-1} \partial_r g \dot{r}. \tag{6}$$

Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \qquad (4)$$

$$M_1 \ddot{q}_j = -\partial_q L_1(q_j, \dot{q}_j) - \lambda_j \partial_q g(r, q_j),$$
(5)

$$\nu_1(r) := \left[-(\partial_q g)^{-1} \partial_r g \dot{r}, \right]$$
(6)

$$a_1(r) := \frac{\mathrm{d}}{\mathrm{d}t} v_1(r(t), \dot{r}(t), \ddot{r}(t)). \tag{7}$$

Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_{0}\ddot{r} = -\partial_{r}L_{0}(r,\dot{r}) - \sum_{i=1}^{n}\lambda_{i}\partial_{r}g(r,q_{i}),$$
(4)

$$M_{1}\ddot{q}_{j} = \boxed{-\partial_{q}L_{1}(q_{j},\dot{q}_{j}) - \lambda_{j}\partial_{q}g(r,q_{j}),}$$
(5)

$$v_{1}(\dot{r}) := -(\partial_{q}g)^{-1}\partial_{r}g\dot{r},$$
(6)

$$M_1 a_1(\ddot{r}) := M_1 \frac{\mathrm{d}}{\mathrm{d}t} v_1 = -\partial_q L_1 - \lambda_j \partial_q g \tag{7}$$

Numerics 000000 Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_0\ddot{r} = -\partial_r L_0(r,\dot{r}) - \sum_{i=1}^n \lambda_i \partial_r g(r,q_i), \quad (4)$$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = 0 \qquad = \partial_t \rho + v_1 \partial_q \rho, \tag{5}$$

$$v_1(\dot{r}) := -(\partial_q g)^{-1} \partial_r g \dot{r}, \qquad (6)$$

$$M_1 a_1(\ddot{r}) := M_1 \frac{\mathrm{d}}{\mathrm{d}t} v_1 = -\partial_q L_1 - \lambda_j \partial_q g \tag{7}$$

Λ

Partially mesoscopic systems

Numerics 000000 Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_{0}\ddot{r} = -\partial_{r}L_{0}(r,\dot{r}) - \sum_{i=1}^{n} \lambda_{i}\partial_{r}g(r,q_{i}), \quad (4)$$

$$0 = \partial_{t}\rho + v_{1}\partial_{q}\rho, \quad (5)$$

$$v_{1}(\dot{r}) := -(\partial_{q}g)^{-1}\partial_{r}g\dot{r}, \quad (6)$$

$$M_{1}a_{1}(\ddot{r}) := M_{1}\frac{d}{dt}v_{1} = -\partial_{q}L_{1} - \lambda_{j}\partial_{q}g \quad (7)$$

Muscles 0000 Source terms

Derivation of the partially mesoscopic description

$$M_{0}\ddot{r} = -\partial_{r}L_{0}(r,\dot{r}) - \int \lambda(q)\partial_{r}g(r,q) \rho(q) dq, \quad (4)$$

$$0 = \partial_{t}\rho + v_{1}\partial_{q}\rho, \qquad (5)$$

$$v_{1}(\dot{r}) := -(\partial_{q}g)^{-1}\partial_{r}g\dot{r}, \qquad (6)$$

$$M_{1}a_{1}(\ddot{r}) := M_{1}\frac{d}{dt}v_{1} = -\partial_{q}L_{1} - \lambda_{j}\partial_{q}g \qquad (7)$$

Equation of partially mesoscopic systems

$$M_{0}\ddot{r} = -\partial_{r}L_{0} - \int \lambda(q)\partial_{r}g(r,q)\rho(q,t)\,\mathrm{d}q, \quad (8)$$

$$\partial_{t}\rho + v_{1}(\dot{r})\,\partial_{q}\rho = 0, \qquad (9)$$

$$\lambda(q)\partial_{r}g = M_{1}\partial_{1}(\ddot{r}) + \partial_{r}L_{1} \qquad (10)$$

$$\lambda(q)\partial_q g = M_1 a_1(\ddot{r}) + \partial_q L_1 \tag{10}$$

with the definition

$$\mathbf{v}_{1}(\dot{r};q,r) := -\left(\partial_{q}g\right)^{-1} \partial_{r}g[\dot{r}],$$

$$\mathbf{a}_{1}(\ddot{r};q,r,\dot{r}) := -\left(\partial_{q}g\right)^{-1} \left(\partial_{r}^{2}g[\dot{r},\dot{r}] + 2\partial_{r}\partial_{q}g[\dot{r},v_{1}(\dot{r})]\partial_{q}^{2}g[v_{1}(\dot{r}),v_{1}(\dot{r})] + \partial_{r}g[\dot{r}]\right).$$

$$(12)$$

Numerics

/luscles

Source terms

Steffen Plunder, Prof. Bernd Simeon

Partially mesoscopic and Lagrangian systems

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• We have classical physical system

$$M_0\ddot{r} = -\partial_r L_0 - \int \lambda(q)\partial_r g(r,q)\rho(q,t)\,\mathrm{d}q.$$

\Rightarrow maybe symplectic methods?

• There is a conservation law

$$\partial_t \rho + v_1(\dot{r}) \ \partial_q \rho = 0.$$

⇒ maybe upwind? Or more complicated?

• And it is still a DAE of Index 1

$$\lambda(q)\partial_q g = M_1 a_1(\ddot{r}) + \partial_q L_1.$$

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• We have classical physical system

$$M_0\ddot{r} = -\partial_r L_0 - \int \lambda(q)\partial_r g(r,q)\rho(q,t)\,\mathrm{d}q.$$

 \Rightarrow maybe symplectic methods?

• There is a conservation law

$$\partial_t \rho + v_1(\dot{r}) \ \partial_q \rho = 0.$$

- \Rightarrow maybe upwind? Or more complicated?
- And it is still a DAE of Index 1

$$\lambda(q)\partial_q g = M_1 a_1(\ddot{r}) + \partial_q L_1.$$

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• We have classical physical system

$$M_0\ddot{r} = -\partial_r L_0 - \int \lambda(q)\partial_r g(r,q)\rho(q,t)\,\mathrm{d}q.$$

 \Rightarrow maybe symplectic methods?

• There is a conservation law

$$\partial_t \rho + v_1(\dot{r}) \ \partial_q \rho = 0.$$

 \Rightarrow maybe upwind? Or more complicated?

• And it is still a DAE of Index 1

$$\lambda(q)\partial_q g = M_1 a_1(\ddot{r}) + \partial_q L_1.$$

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• **Semi-Lagrangian approach:** If g is linear w.r.t. q, then we just need to approximate the shift

$$h(t)=\int_0 v_1(s)\,\mathrm{d}s.$$

and set

$$\rho(q,t) = \rho(q-h(t),0).$$

-h(t) can be integrated in a symplectic manner!

- **Upwind:** Boundary conditions for the conservation law are missing!
 - It is unclear how symplectic methods are defined for the integration of the conservation law.

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• **Semi-Lagrangian approach:** If g is linear w.r.t. q, then we just need to approximate the shift

$$h(t)=\int_0 v_1(s)\,\mathrm{d}s.$$

and set

$$\rho(q,t) = \rho(q-h(t),0).$$

- -h(t) can be integrated in a symplectic manner!
- **Upwind:** Boundary conditions for the conservation law are missing!
 - It is unclear how symplectic methods are defined for the integration of the conservation law.

Numerics

Muscles 0000 Source terms

Clash of numerical philosophies...

• **Semi-Lagrangian approach:** If g is linear w.r.t. q, then we just need to approximate the shift

$$h(t)=\int_0 v_1(s)\,\mathrm{d}s.$$

and set

$$\rho(q,t) = \rho(q-h(t),0).$$

-h(t) can be integrated in a symplectic manner!

- **Upwind:** Boundary conditions for the conservation law are missing!
 - It is unclear how symplectic methods are defined for the integration of the conservation law.

Numerics

Muscles 0000 Source terms

Toy-Example: Euler-Lagrange vs. Partially Mesoscopic

If the initial values q_j are normally distributed, a direct simulation or a Monte-Carlo simulation requires far more degrees of freedom $(n \approx 10^4)$ for good convergence, compared to a semi-Lagrangian scheme $(n_\rho \approx 30)$.

Numerics

Muscles 0000 Source terms

Euler-Lagrange, Monte-Carlo

Numerics

Muscles 0000 Source terms

Semi-Lagrangian Approach

Numerics

Muscles 2000 Source terms

Upwind

Numeric

Muscles

Source terms

Muscle tissue

Numerics 000000 Muscles 0000 Source terms

Muscle tissue

Muscles 0000 Source terms

Basically same, but a tiny little bit infinite dimensional

- Heavy system 'L₀(u, ∇u, u; X, t)': Nonlinear quasi-incompressible hyperelastic solid. (Classical field theory)
- Particle systems '∑_j L₁(q_j(X), q_j(X), t)': Actin-Myosin cross-bridges in each sarcomere (muscle cell).
- Constraints $g(u(X), \nabla u(X), q_j(X)) = 0$ for all material points X and all particles j.

Classical field theory fits nicely to this theory

Numerics 000000 Muscles

Source terms

Muscles as a "partially mesoscopic system"

$$egin{aligned} m_0\ddotarphi &= ext{Div}\left(oldsymbol{P} - \lambdaoldsymbol{G}
ight), \ \partial_t
ho &- oldsymbol{v}_1\partial_q
ho_q = 0, \ \lambdaoldsymbol{G} &:= \int_{\mathbb{R}}\lambda(q)oldsymbol{G}
ho(q)\,\mathrm{d}q, \ \lambda(q) &:= \kappa_1q - m_1rac{\mathrm{d}^2}{\mathrm{d}t^2}\left\|n_{\mathrm{fiber}}
ight\|, \end{aligned}$$

$$\boldsymbol{P} = rac{\partial \mathcal{L}}{\partial \,\mathrm{D} arphi}, \quad \boldsymbol{G} = rac{\partial g}{\partial \,\mathrm{D} arphi}, \quad g = \| n_{\mathrm{fiber}} \| - q.$$

The Lagrangian multiplier is a scalar field, defining strength of the active contraction stress.

Numerics 000000 Muscles

Source terms

Muscles as a "partially mesoscopic system"

$$\begin{split} m_{0}\ddot{\varphi} &= \operatorname{Div}\left(\boldsymbol{P} - \lambda\boldsymbol{G}\right),\\ \partial_{t}\rho - v_{1}\partial_{q}\rho_{q} &= 0,\\ \lambda\boldsymbol{G} &:= \int_{\mathbb{R}}\lambda(q)\boldsymbol{G}\rho(q)\,\mathrm{d}q,\\ \lambda(q) &:= \kappa_{1}q - m_{1}\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}\left\|\boldsymbol{n}_{\mathrm{fiber}}\right\|,\\ \boldsymbol{P} &= \frac{\partial\mathcal{L}}{\partial\,\mathrm{D}\varphi}, \quad \boldsymbol{G} &= \frac{\partial\boldsymbol{g}}{\partial\,\mathrm{D}\varphi}, \quad \boldsymbol{g} &= \|\boldsymbol{n}_{\mathrm{fiber}}\| - q. \end{split}$$

The Lagrangian multiplier is a scalar field, defining strength of the active contraction stress.

Numerics 000000 /luscles

Source terms

Non-conservative part of muscle models!

$$\begin{split} m_0 \ddot{\varphi} &= \mathsf{Div} \left(\boldsymbol{P} - \lambda \boldsymbol{G} \right), \\ \partial_t \rho - v_1 \partial_q \rho_q &= \boldsymbol{f} \cdot (1 - \rho) - \boldsymbol{g} \cdot \rho, \\ \lambda \boldsymbol{G} &:= \int_{\mathbb{R}} \lambda(q) \boldsymbol{G} \rho(q) \, \mathrm{d} q, \\ \lambda(q) &:= \kappa_1 q - m_1 \frac{\mathrm{d}^2}{\mathrm{d} t^2} \left\| n_{\mathrm{fiber}} \right\|, \end{split}$$

$$\boldsymbol{P} = rac{\partial \mathcal{L}}{\partial \,\mathrm{D} arphi}, \quad \boldsymbol{G} = rac{\partial g}{\partial \,\mathrm{D} arphi}, \quad g = \|\boldsymbol{n}_{\mathrm{fiber}}\| - q_{\mathrm{fiber}}\|$$

Change of contraction strength is non-conservative! It is possible to recruit new cross-bridges (f) or to detach (g)

Numerics 000000 /luscles

Source terms

Non-conservative part of muscle models!

$$m_{0}\ddot{\varphi} = \operatorname{Div}\left(\boldsymbol{P} - \lambda\boldsymbol{G}\right),$$

$$\partial_{t}\rho - \boldsymbol{v}_{1}\partial_{q}\rho_{q} = \boldsymbol{f} \cdot (\boldsymbol{1} - \boldsymbol{\rho}) - \boldsymbol{g} \cdot \boldsymbol{\rho},$$

$$\lambda\boldsymbol{G} := \int_{\mathbb{R}} \lambda(\boldsymbol{q})\boldsymbol{G}\boldsymbol{\rho}(\boldsymbol{q}) \,\mathrm{d}\boldsymbol{q},$$

$$\lambda(\boldsymbol{q}) := \kappa_{1}\boldsymbol{q} - m_{1}\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left\|\boldsymbol{n}_{\mathrm{fiber}}\right\|,$$

$$\boldsymbol{P} = rac{\partial \mathcal{L}}{\partial \,\mathrm{D} arphi}, \quad \boldsymbol{G} = rac{\partial g}{\partial \,\mathrm{D} arphi}, \quad g = \|\boldsymbol{n}_{\mathrm{fiber}}\| - q.$$

Change of contraction strength is non-conservative! It is possible to recruit new cross-bridges (f) or to detach (g).

Numerics 000000 Muscles 2000 Source terms

Numerical challenges

• Source terms in the transport equation

$$\partial_t \rho - v_1 \partial_q \rho = f \cdot (1 - \rho) + g \cdot \rho,$$

lead to a stiff system!

- Semi-Lagrangian integration is unstable for discontinuous f(q), g(q).
- $\frac{d\rho}{dt} \neq 0$ corresponds to creation $(n \mapsto n+1)$ or annihilation $(n \mapsto n-1)$ of particles.

- Modeling as a Port-Hamiltonian system possible?!

Numerics 000000 /luscles

Source terms

Numerical challenges

• Source terms in the transport equation

$$\partial_t \rho - \mathbf{v}_1 \partial_q \rho = f \cdot (1 - \rho) + g \cdot \rho,$$

lead to a stiff system!

- Semi-Lagrangian integration is unstable for discontinuous f(q), g(q).
- $\frac{d\rho}{dt} \neq 0$ corresponds to creation $(n \mapsto n+1)$ or annihilation $(n \mapsto n-1)$ of particles.

- Modeling as a Port-Hamiltonian system possible?!

Numerics 000000 /luscles

Source terms

Numerical challenges

• Source terms in the transport equation

$$\partial_t \rho - v_1 \partial_q \rho = f \cdot (1 - \rho) + g \cdot \rho,$$

lead to a stiff system!

- Semi-Lagrangian integration is unstable for discontinuous f(q), g(q).
- $\frac{d\rho}{dt} \neq 0$ corresponds to creation $(n \mapsto n+1)$ or annihilation $(n \mapsto n-1)$ of particles.

- Modeling as a Port-Hamiltonian system possible?!

Numerics 000000 /luscles

Source terms

Numerical challenges

• Source terms in the transport equation

$$\partial_t \rho - \mathbf{v}_1 \partial_q \rho = f \cdot (1 - \rho) + g \cdot \rho,$$

lead to a stiff system!

- Semi-Lagrangian integration is unstable for discontinuous f(q), g(q).
- $\frac{d\rho}{dt} \neq 0$ corresponds to creation $(n \mapsto n+1)$ or annihilation $(n \mapsto n-1)$ of particles.
 - Modeling as a Port-Hamiltonian system possible?!

Numerics 000000 Muscles 0000 Source terms

Colourful but unstable for large deformations...

active stress

Numeric 000000 Muscles 2000 Source terms

Conclusion

- We developed a framework for coupling between classical Lagrangian and mesoscopic systems.
- Naive, simple and computational efficient methods for the conservative case are available.

- The non-conservative case is numerically difficult: a mix between different numerical philosophies is required.
 - Notion of symplectic numerical schemes not defined for partially mesoscopic systems.
 - Source terms lead to a stiff system.

Numeric 000000 Muscles 2000 Source terms

Conclusion

- We developed a framework for coupling between classical Lagrangian and mesoscopic systems.
- Naive, simple and computational efficient methods for the conservative case are available.

- The non-conservative case is numerically difficult: a mix between different numerical philosophies is required.
 - Notion of symplectic numerical schemes not defined for partially mesoscopic systems.
 - Source terms lead to a stiff system.

Numerics 000000 Muscles

Source terms

Thanks for your attention!