
Parameter Estimation for Differential
Equations with Julia

Steffen Plunder

November 25, 2024

Statistics and optimisation theory provide rich theories to find optimal model pa-
rameters for given datapoints. These methodologies adapt well to ODE and PDE
models. Depending on the number of unknown parameters and available data,
different strategies are optimal. We will discuss optimisation based parameter es-
timation, forward and adjoint sensitivity analysis and automatic differentiation,
which are all techniques to obtain accurate gradients.

The lecture is complemented by code examples in the programming language
Julia.

Recommended literature

Ideal parameter estimation techniques depend critically on the application set-
ting. Here are some references: A good introduction, especially for ODE models
in mathematical biology, is [2, Chapter 3] and [6]. For PDE models, adjoint equa-
tions are of key importance, where one might consult [5, 4].

These notes largely follow [4] and the lecture given 2018 at the Technical Uni-
veristy Kaiserslautern (now called RPTU Kaiserslautern) by Prof. Rene Pinnau.

Notation

Before we start, a quick note about notations. Let X, Y be real Banach spaces.
For a function f : X × Y → R : (x, y) 7→ f (x, y) we will write ∂x f to denote
the derivative of f with respect to the first argument x here, and ∂y f for the
second argument. To denote the total derivative of an expression, we will write
d

dx f (x, y(x)).

The derivative evaluated at a point is a linear map ∂x f (x, y) : X → R and for
a direction ν ∈ X we write ∂x f (x, y)[ν] to denote the directional derivative in

1

direction ν.

A function f : X → Y is Gâteaux differentiable at a point x ∈ X, if the limit
limh→0

f (x+hν)− f (x)
h exists for all ν ∈ X.

A function is Fréchet differentiable at x ∈ X, in which case there existis a bounded,
linear operator A(x) : X → Y such that lim∥ν∥→0

∥ f (x+ν)− f (x)−A(x)ν∥
∥ν∥ = 0. We

denote the Fréchet derivative as ∂x f (x) := A. A function is continously differen-
tiable, if x 7→ A(x) is continous with respect to the operator norm ∥ ∂x f (x)∥ :=
supν∈X

∥ ∂x f (x)[ν]∥Y
∥ν∥X

. For more notes on nonlinear analysis in infinite dimensional
spaces, we refer to [1] or the first chapter of [4].

1 Introduction

Most of the theory can be developed similar for ODE and PDE models, which we
will do in the next chapter. To give a brief overview, we first consider the most
typical ODE setting. Given an ODE model such as

∂t u(t) = f (u(t), p) for t ∈ (0, T),
u(0) = u0,

where T > 0 denotes the terminal time, u0 ∈ Rnx the inital data and f : Rnx ×
Rnp → Rnx is a parameterized vector field such that the ODE is well-posed for
any parameter p ∈ Rnp . We denote the solution as u(t, p) to make the depen-
dency on the parameters explicit.

For given times 0 < t1 ≤ · · · ≤ tm ≤ T and data points u1, . . . , um ∈ Rnx we seek
to find parameters p which minimize the distance of the ODE model to the data.
For this task, we might introduce the reduced (discrete) cost function as

j(p) :=
m

∑
k=0

∥u(tk, p)− uk∥2 + γ∥p∥2

where γ is a regularisation parameter which should be small but might help nu-
merical minimisation attempts.

The parameter estimation problem can then be written as an optimisation

p∗ ∈ arg min
p∈Rnp

j(p),

turning the parameter optimisation into a regular minimisation problem.

One aspect which is specific for parameter optimisation is that the evaluation of
j(p) requires the solution of a differential equations, which might be computa-
tionally expensive and numerically inaccurate. Hence, we need fitting optimisa-
tion methods and ideally a robust way to approximate the gradients ∂p j(p).

2

Therefore, the main topics of these lecture notes are:

• choices of the cost function,
• strategies to compute the gradients ∂p j(p) effectively,
• a quick overview of (global) optimisation methods.

One word of caution: The performance of parameter estimation depends often on
the quality of the data, the choice of the mathematical model and the cost func-
tion. Rather than a magic tool to find all unknown parameters for a model, one
might need adapt the techniques to the concrete model.

Exercise 1. Find a differential equation for s(t) := ∂p u(t, p), for this task, calculate
∂t s(t) in terms of u(t, p). How can s(t) be used to compute ∂t j(p)?

2 Parameter Estimation as a Constrained Optimisa-
tion Problem

2.1 From differential equations to optimisation problems

In an abstract setting, we will consider differential equations of the form{
∂t u = f (u, p) for t ∈ (0, T),
u(0) = u0.

(1)

where u ∈ U is the solution, u0 ∈ X the initial condition, T > 0 the terminal time
and p ∈ P are free parameters. The spaces U, X, P are some Banach spaces which
we specify later. We might denote the solution as u(t, p) (or u(x, t, p) in the PDE
case) and we assume that the equation is always well-posed (see assumptions
below), such that we can define the solution map

S : P 7→ U : p 7→ u(·, p).

Next, we consider an abstract cost function

J : U × P → R

and its reduced counterpart

j(p) := J(S(p), p).

Our aim is to find

p∗ ∈ arg min
p∈P

j(p). (2)

3

For our task, it is convenient to write the differential equation in its implicit form.
Let us introduce the state equation as

F : U × P 7→ V

for some suitable Banach space V such that it defines the differential equation
implicitly, i.e.,

F(u, p) = 0 ⇔ eq. (1).

We can then rewrite the unconstrained optimisation problem in eq. (2) as

min
p∈P

J(u, p) (3)

such that F(u, p) = 0. (4)

Assumptions While these notes do not put special emphasize on mathematical
rigour. Here are some assumptions which ensure that our constrained optimisa-
tion problem would be well-posed. We refer to [4] for the technical details.

• U, X, P are reflexive Banach spaces, V is a Banach space.
• J : U × P → V is continuous.
• For each p ∈ P there is one unique solution u ∈ U such that F(u, p) = 0.

Moveover, the state equation F(u, p) = 0 has a bounded solution map S :
P → U.

• F : U × P 7→ V is continuous under weak convergence.
• J is sequentially weakly lower semicontinuous.
• J, F are continuously (Fréchet)-differentiable.
• ∂u F(S(p), p)) : U → V : ηu 7→ ∂u F(S(p), p)[ηu] is continuously invertible.

Under these assumptions, the constrained minimisation problem in eqs. (3) and (4)
has a unique solution, see [4, Thm. 1.45].

Let us discuss two examples to make the abstract formalism more concrete.

2.1.1 ODE case

In the ODE setting, we can pick

U = H1([0, T], Rnx),
P = Rnp ,

V = L2([0, T], Rnx)× Rnx .

and define the state equation including the initial condition as

F(u, p) :=
(

∂t u − f (u, p)
u(0)− u0

)

4

where ∂t u− f (u, p) is a shorthand notation for the function t 7→ ∂t u(t)− f (u(t), p)
and H1 is the Sobolev space of functions with one time derivative in L2.

2.1.2 PDE case

In the PDE setting, the used spaces depend highly on the setting. We will consider
here . For the model equation

∂tu(x, t) = ∆xu(x, t) + f (x, p) in Ω × (0, T),
u(·, 0) = u0 at t = 0,
∂x u(x, t)[n] = 0 on ∂Ω × (0, T),

for some compact, non-empty domain Ω ⊂ Rnx with smooth boundary with
normal n. The construction of suitable function spaces is out-of-scope here, but
we just outline that one can pick

U = W([0, T], L2(Ω), H1(Ω)), V = L2([0, T], H−1(Ω))× L2(Ω)

where H1(Ω) denotes the Sobolev space over Ω with one derivative in L2, H−1

it’s dual space and W denotes a space of once weakly differentiable functions
such as t 7→ u(·, t) ∈ H1(Ω) such that t 7→ u(·, t) and t 7→ ∂x u(·, t) are Bochner
integrable with finite L2 norm over time. See [4, Section 1.3] for details.

Similar to the ODE setting, we can then define the PDE implicitly with the map

F(u, p) =
(

t 7→ ∂t u(·, t)− ∆xu(·, t)− f (·, t) ∈ H−1(Ω)
u(·, 0)− u0 ∈ L2(Ω)

)
where the upper line would correspond to the weak-form of the heat equation.1

Julia examples

In the following, we use Julia to show (simplified) implementations of the pre-
sented theoretical methods. Please note that we might skip technical details
which would improve the implementation, and rather focus on mathematical
clearity.

We start with an simple example of solving the ODE ẋ = −αx, just to demonstrate
the interface.

1 using OrdinaryDiffEq, Plots
2

3 # Define right-hand side of ODE as a in-place function

1The upper line is using the dual notation, but F = 0 will imply that for any test function
ηu ∈ H1(Ω) we have

∫ T
0 (∂tu − f)ηu + ⟨∇xu,∇xηu⟩Rnx dt = 0.

5

4 function ode(du, u, p, t)
5 du[1] = p[1] * u[1]
6 end
7

8 tspan = (0.0, 10.0) # time interval
9 p = [-1.0] # parameters

10 u0 = [1.0] # initial value
11

12 odeprob = ODEProblem(ode, u0, tspan, p)
13 odesol = solve(odeprob, Tsit5())
14

15 plot(odesol, labels = ["x(t)"], title = "First-order ODE")

Listing 1: Solving ODE models with Julia.

Exercise 2 (Lotka-Volterra Predator-Prey model). Solve and visualize the differential
equation

∂t x = αx − βxy,
∂t y = −γy + δxy

with initial data x(0) = 1, y(0) = 1 for t ∈ [0, 10] and α = 3
2 , β = 1, γ = 3, δ = 1.

Exercise 3. Write your own ODE solver into the function ‘solver(fun, u0, tspan, dt, p)‘
such that the following code works. As a numerical method, you can choose the explicit
Euler method

u(t + ∆t) := u(t) + ∆t f (u(t), p, t).

1 using Plots
2

3 function solver(fnc, u0, tspan, dt, p)
4 # write your code here
5 end
6

7 # test code which should run
8 function ode(du, u, p, t)
9 du[1] = p[1] * u[2]

10 du[2] = -p[2] * u[1]
11 end
12

13 tspan = (0.0, 10.0) # time interval
14 dt = 0.01
15 p = [1.0, 1.0] # parameters
16 u0 = [1.0] # initial value
17

18 odesol = solver(ode, u0, tspan, dt, p)
19

20 plot(odesol.t, odesol.u[1,:])

6

21 # should show the first component of the solution
22

23 @time solver(ode, u0, tspan, dt, p)
24 @profview solver(ode, u0, tspan, dt, p)
25 # measure the performance of your solver as well

Listing 2: Writing your own ODE soler.

As an extra challenge: Can you write the solver such that only very allocations occur
(let’s say less than 10 allocations)?

Exercise 4. Implement the 2D Laplace operator for Neumann boundary conditions in
Julia.

2.2 Cost functionals

We now outline the most typical choices for cost functionals.

2.2.1 Continuous cost function

Given a target trajectory y(t), we define

Jcont(u, p) =
1
2
∥u − y∥2

U =
1
2

∫ T

0
∥u(t, p)− y(t)∥2

Rd dt

2.2.2 Discrete cost function

The most common case is that at given time points 0 ≤ t1 ≤ t2 . . . tM ≤ T we
have experimental data u1, . . . , uM ∈ U and weights w1, . . . , wM ≥ 0. Then, a
least square loss function reads

Jdiscr(u, p) =
M

∑
k=1

wk(u(tk, p)− uk)
2.

2.2.3 Regularization

One issue with L2-type cost functions is that there is not guarantee that the result-
ing cost function j(p) has a unique global minimizer. Especially in applications,
it might even be unclear how close a model can fit the provided data in the first
place. The simplest workaround is a Tikhonov type regularisation, by simply
adding a quadratic term such as

JL2−reg(u, p) = J(u, p) + γ∥p∥2
2.

For large γ, the regularized cost function might be convex, which allows numer-
ical algorithms to converge easily, but at the cost of potentially missing out the
true minimizers of j(p).

7

Julia examples

One of the advantages of Julia is, that we can define the cost function generically,
without compromising performance.

Exercise 5. Define your own favourite cost function for the Lotka-Volterra Predetor-Prey
model.

Exercise 6. Use the package ‘DiffEqParamEstim‘ to define a discrete L2 loss function for
the Lotka-Volterra model, similar to the example below:

1 using DiffEqParamEstim
2

3 ts = [0.0, 5.0, 7.0, 9.0]
4 xs = @. exp(-0.2 * ts)
5

6 cost_function = build_loss_objective(odeprob, Tsit5(),
7 L2Loss(ts, xs),
8 Optimization.AutoForwardDiff(),
9 maxiters = 10000)

10

11 # calling the function:
12 cost_function([-0.2])
13 cost_function([0.2])

Listing 3: Writing your own ODE soler.

3 Computing gradients

The schemes discussed in the previous section, all require the gradient of the cost
function ∂p j(p) or the directional derivatives ∂p j(p)[ν].

There are two main strategies to obtains these derivatives. The most cannonical
approach is the forward-sensitivity analysis which is based on the chain rule. The
backward counterpart is called adjoint-sensitivity analysis which is favourable
for large-scale problems [3].

3.1 Forward-sensitivity analysis

If we directly differentiate j(p) = J(S(p), p), we obtain

∂p j(p) = ∂u J(S(p), p) ∂p S(p) + ∂p J(S(p), p). (5)

The derivative of the solution with respect to the parameters ∂p S(p) are called
the sensitivities. We denote the sensitivities as s = ∂p S(p). Since S(p) is defined

8

as the unique solution u = S(p) such that F(u, p) = 0, we can use implicit differ-
entiation to obtain an equation for the sensitivities s via

∂u F(S(p), p)[∂p S(p)] = ∂p F(S(p), p). (6)

The above equation is overly abstract, but applies to a wide range of problems.

3.1.1 ODE case

Let us consider the ODE example

F(u, p) =
(

∂u − f (u, p)
u(0)− u0

)
where V = V∗ = L2([0, T], Rnx)× Rnx .

The linearization of this map around a solution u with F(u, p) = 0 leads to

∂u F(u, p)[ηu] =

(
∂t ηu − ∂u f (u, p)ηu

ηu(0)

)
for ηu ∈ U and

∂p F(u, p) =
(

∂p f (u, p)
0

)
.

Hence, the sentitivities simply solve the parameter variational equation

∂t s(t) = ∂u f (u(t), p)s(t) + ∂p f (u(t), p)
s(0) = 0.

We can compute u(t) and s(t) at the same time and then obtain the gradient of the
solution by using the chain rule in eq. (5). For the discrete cost functional Jdiscr,
this yields

∂p j(p) =
M

∑
k=1

wk(u(tk, p)− uk)s(tk)

and for the continous cost functional one obtains

∂p j(p) =
∫ T

0
(u(t, p)− y(t))s(t)dt

which can be approximated via quadrature rules.

9

3.1.2 PDE case

Forward-sensitivity analysis is very similar in both the ODE and the PDE setting.
Considering the heat equation as previously, we obtain the parameter variational
equation

∂t s(x, t) = −∆xs(x, t) + ∂p f (x, p).

The major difference between the ODE case and the PDE case will show up later
for adjoint sensitivities.

3.1.3 Finite differnces

The most straightforward approach are finite differences. We can approximate
the derivative in direction v ∈ Y as

s(t)[v] = ∂p u(t, p)[v] ≈ u(t, p)− u(t, p − hv)
h

for a suitable stepsize h > 0. To approximate ∂p u(t, p) via finite differences, we
therefore need nY additional solutions.

An advantage of this approach is the relatively easy implementation and espe-
cially for nY < 200 one might also get a very performant gradient evaluation.

However, finding the ideal parameter step-size hp can be a challenge, as too large
or too small values lead to numerical approximation or round-off errors.

3.1.4 Automatic differentiation

A convenient way to get derivatives without the need to explicitly setup the pa-
rameter variational equation, is by using automatic differentiation.

The key idea is that computer programs are essentially a composition of functions
for which the derivative is known.

Blackboard...

3.2 Adjoint-senstivity analysis

As mentioned before, for large-scale problems the application of the chain rule is
suboptimal, as it requires us to compute the sensitivities whereas the the gradient
∂p j in principle does not depend on the dimension of the differential equation.

10

We recall that our original aim is to solve minp j(p) which we could alternatively
formulate as a constrained optimisation problem

min
p∈P

J(u, p)

such that F(u, p) = 0.

Instead of using the solution map, we could instead introduce a Lagranian func-
tion with a Lagrangian multiplier λ ∈ V∗ for the constraints as follows

L(u, p, λ) = J(u, p) + ⟨λ, F(u, p)⟩V∗,V

which leads to equivalent2 minimisation problem

min
p∈P,λ∈V∗

L(u, p, λ).

The first-order optimality conditions for this problem read

0 = ∂u J(u, p)[ηu] + ⟨λ, ∂u F(u, p)[ηu]⟩V∗,V ∀ηu ∈ U,
0 = ∂p J(u, p)[ηp] + ⟨λ, ∂p F(u, p)[ηp]⟩V∗,V ∀ηp ∈ P,
0 = ⟨ηλ, F(u, p)⟩V,V∗ ∀ηλ ∈ V.

Let’s break down these three equations one-by-one.

Let’s us fix a solution u, p, λ of the above system [ref TODO]. Since V is a Hilbert
space and V∗ it’s dual space, the last equation simply states that the differential
equation is satisfied

F(u, p) = 0.

Next, we consider the first equation, which we can rewrite by using the adjoint
of the linearized state equation

0 = ∂u J(u, p)[ηu] + ⟨v, ∂u F(u, p)[ηu]⟩V∗,V

= ∂u J(u, p)[ηu] + ⟨∂u F(u, p)∗λ, ηu⟩U∗,U

= ⟨∂u J(u, p) + ∂u F(u, p)∗λ, ηu⟩U∗,U,

which has to hold for all ηu ∈ U. In other words, the Lagrangian multiplier solves
the adjoint state equation

∂u F(u, p)∗λ = − ∂u J(u, p).

2Notice that whenever F(u, p) ̸= 0 the minimum would be − inf which is not a proper mini-
mum.

11

Inserting this into the second equation, we obtain

0 = ∂p J(u, p)[ηp] + ⟨λ, ∂p F(u, p)[ηp]⟩V∗,V

= ∂p J(u, p)[ηp]− ⟨∂u F(u, p)−∗ ∂u J(u, p), ∂p F(u, p)[ηp]⟩V∗,V

= ∂p J(u, p)[ηp]− ∂u J(u, p) ∂u F(u, p)−1 ∂p F(u, p)[ηp]

= ∂p j(p)[ηp].

Hence, we can use the adjoint state λ to compute the cost gradient as

∂p j(p) = ∂p J(u, p)− ∂p F(u, p)∗λ.

3.2.1 ODE example

Returning to our running example, we again consider the setting

F(u, p) =
(

∂t u − f (u, p)
u(0)− u0

)
,

∂u F(u, p)[ηu] =

(
∂t ηu − ∂u f (u, p)ηu

ηu(0)

)
,

∂p F(u, p) =
(

∂p f (u, p)
0

)
where V = V∗ = L2([0, T], Rnx)× Rnx . However, this time we derive the adjoint
equations. For a given ηu ∈ U and λ = (λu, λ0) ∈ V∗, we compute

∂u F(u, p)∗[λ][ηu] = ⟨∂u F(u, p)∗λ, ηu⟩
= ⟨λ, ∂u F(u, p)ηu⟩

=
∫ T

0
λu(t) ·

(
∂t ηu(t)− ∂u f (u(t), p)ηu(t)

)
dt + λ0ηu(0)

= −
∫ T

0

(
∂t λu(t)− ∂u f (u(t), p)λu

)
· ηu(t)dt

+ λ(T)ηu(T)− λu(0)ηu(0) + λ0ηu(0).

where we applied the chain rule in the last step. At this stage, we can already
see that we are going to obtain a differential equation for the adjoint states λu
with a terminal condition for λu(T) and a free boundary at λu(0) = λ0 which can
take any value. (Since λ0 is not important in the further analysis, we will in the
following just write λ = λu.)

Unlike the forward sensitivies, we cannot write down the differential equations
for the adoint states without reference to the cost functional.

12

Let us therefore consider the example of a continuous cost function

Jcont(u, p) =
1
2

∫ T

0
∥u(t)− y(t)∥2 dt

which then leads to the following adjoint equations

∂t λ = ∂u f (u, p)λ − (u(t)− y(t)) for t ∈ (0, T),
λ(T) = 0

which form a terminal problem. This system can be understood as backtracking
the changes of the cost functional rather than forwarding the derivations of the
solutions.

Once we computed the adjoint state, we obtain the cost gradient as

∂p j(p) = −
∫ T

0
∂p f (u(t), p)λ(t)dt.

3.2.2 Computational efficiency between forward-sensitivities and adjoint-sensitivities

To recapture, we now have two strategies to obtain the cost gradients ∂p j(p). Let
us compare their computational demand for the ODE setting with dim(u(t)) ∈
Rnx and dim(P) = np. In both cases, one first computes the solution u = S(p) for
the current parameter value p.

• Forward-sensitivities.

– Compute sensitivities s(t) ∈ Rnp×nx by solving the parameter varia-
tional equation.

– Apply the chain rule, i.e. ∂p j = ∂p J + ∂u J s.

– Runtime ≈ O(n2
p · nx).

• Adjoint-sensitivities.

– Compute the adjoint states λ(t) ∈ Rnx .

– Use the adjoint gradient equation ∂p j = ∂p J − ∂p F∗λ.

– Runtime ≈ O(np · nx).

In short, by avoiding the chain rule we can speed-up the gradient computation
by a linear factor in dim(P). If one only computes the directional derivatives
∂p j(p)[v], then the runtimes change accordingly from O(np · nx) to O(nx).3

3However, we have to note that this anaysis is theoretical in the sense that solving a larger
system with adaptive time-stepping methods might lead to hard-to-compute nonlinear effects on
the runtime.

13

Exercise 7. Derive the adjoint equation for the case that the parameters describe the
initial condition, i.e.

F(u, p) =
(

∂t u − f (u)
u(0) = p

)
.

Does the adjoint state depend on p? Explain why it depends on p or why not.

Exercise 8. Consider the usual ODE setup, with with the discrete cost functional Jdiscr.
Compute the adjoint equations. The adjoint state λ(t) will not be continuous, explain in
which sense one can obtain well-posedness and uniqueness for the adjoint state.

3.2.3 PDE case

To be continued...

Julia implementation for adjoint sensitivity analysis

Fortunaltly, the heavy lifting for adjoint sensitivity analysis can be automated,
which is part of the Julia package SciMLSensitivities. In the example below,
we need to specify explicitly the gradients at the discrete times (tk)k, which are
for the discrete L2 loss given by

∂p Jdistr(u, p)(tk) = u(tk, p)− uk.

The following Julia code allows us to compute the gradient of the cost function
using adjoint-sensitivities.

1 using SciMLSensitivities
2

3 ts = LinRange(0, 1.0, 10)
4 data = rand(10) # some random fitting data here...
5

6 # we need to define the discrete gradients
7 dg(out,u,p,t,i) = (out.=data[i].+u)
8

9 res = adjoint_sensitivities(sol,Tsit5();
10 t=ts,
11 dg_discrete=dg)

Listing 4: Writing your own ODE soler.

4 Optimisation methods

Once the cost function is selected, we are “only” left with the task of finding a
minimizer of a function j : P → R.

14

In general, we cannot assume that the function j is convex. We will focus on the
following on the methods which are used, rather than their underlying mathe-
matical theory.

4.1 Local minimisation methods

Starting from an initial parameter guess p0 one could seek a minimum of g by
applying

pj+1 = pj − αj∇j(pj)

where αj is either a constant step-size or the solution of a linear search problem.

Since the first order optimality condition for ?? reads

∂ j(p) = 0,

we might stop the iterations once the stopping condition

∥ ∂ j(pj)∥∞ ≤ abstol+ reltol|j(pj)|

is satisfied.4

To be completed...

Julia examples

Exercise 9 (Finally, Parameter Estimation). Continuing the running example of the
Lotka-Volterra model. Combine all the techniques to find optimal paramters for the
datasets data ⋆.csv. In each case, the amount of noise increases. Try also some global
optimisation solvers from the package OptimizationBBO.

5 Practical considerations

Modelling and parameter estimation are in practice often mixed:

• Wrong models, might make a statisfying parameter estimation impossible,

• the model itself might imply conditions on the parameters (non-negativity
or bounds).

This section collects some theoretically “boring” but in practice relevant tips.

4Notice that here the sup-norm is chosen to ensure that a system with more parameters does
not converge faster just because more components of the cost functional gradient as zero.

15

5.1 Parameter bounds

Global optimisation methods usually require parameter bounds to enclose the
search area. For a parameter which has to remain positive, one can apply the
transformation

p′ 7→ ep

which also has the advantage that optimisation solvers might take automatically
smaller steps for small parameter values and larger steps for large parameters
values.

Notice that all techniques in the previous sections do not suffer from using a
nonlinear paramter transformation, as most likely the automatic differentiation
will compute all required gradients for us.

5.2 Choice of ODE solvers

Numerical stiffness can dramatically change depending on the model parame-
ters, which simple equations like ẋ = −γx might require different solvers for
different values of γ, for γ > 0 the equation becomes stiff and implicit solvers are
required, whereas for too large γ the solutions might grow too quickly.

One way around this issue is to use automatic stiffness detection, which adap-
tively switches between a fast explicit solvers and a slower but more robust stiff
solver. In Julia we can use for example the algorithm AutoTsit5(Rosenbrock23()).

5.3 Application specific loss functions

In some cases, the application has specific features which are not well captured
by L2 loss functions. The following challenge consideres a model for electric sig-
nals in neurons. The solutions show steep peeks. The challenge is to find a loss
function which gives enough weight to the peaks such that optimisation routines
can capture the dynamics well.

Exercise 10 (FitzHugh–Nagumo neuron spike model). We consider the model

dv
dt

=
1
ε
(f (v, α)− wIapp),

dw
dt

= −v + γw

with v(0) = 1, w(0) = 0 and t ∈ [0, 10]. The parameters are ε = 0.01, α = 0.2, γ = 0.3
and Iapp = 0.8 and

f (v, α) = v(1 − v)(v − α).

16

Fit this model to the (real) dataset ‘spikes.csv‘. Notice that since the data is experimental
data, the model will not perfectly fit and there are no true parameters which perfectly fit
the data! Good luck.

References
[1] P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. Other

Titles in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, 2013. 846 pp. DOI: 10.1137/1.9781611972597. URL: https:
//epubs.siam.org/doi/book/10.1137/1.9781611972597 (visited
on 11/22/2024).

[2] P. Deuflhard and S. Röblitz. A Guide to Numerical Modelling in Systems Biology.
Vol. 12. Texts in Computational Science and Engineering. Cham: Springer
International Publishing, 2015. DOI: 10.1007/978-3-319-20059-0.
URL: https://link.springer.com/10.1007/978-3-319-20059-0
(visited on 02/04/2024).

[3] F. Fröhlich, B. Kaltenbacher, F. J. Theis, and J. Hasenauer. “Scalable Param-
eter Estimation for Genome-Scale Biochemical Reaction Networks”. PLOS
Computational Biology 13.1 (2017). Ed. by J. Stelling, e1005331. DOI: 10.1371/
journal.pcbi.1005331.

[4] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, eds. Optimization with PDE
Constraints. Mathematical Modelling: Theory and Applications 23. New York:
Springer, 2009. 270 pp.

[5] A. Manzoni, A. Quarteroni, and S. Salsa. Optimal Control of Partial Differ-
ential Equations: Analysis, Approximation, and Applications. Vol. 207. Applied
Mathematical Sciences. Cham: Springer International Publishing, 2021. DOI:
10.1007/978-3-030-77226-0. URL: https://link.springer.
com/10.1007/978-3-030-77226-0 (visited on 02/02/2024).

[6] A. Raue, M. Schilling, J. Bachmann, A. Matteson, M. Schelke, D. Kaschek,
S. Hug, C. Kreutz, B. D. Harms, F. J. Theis, U. Klingmüller, and J. Timmer.
“Lessons Learned from Quantitative Dynamical Modeling in Systems Bi-
ology”. PLOS ONE 8.9 (2013), e74335. DOI: 10.1371/journal.pone.
0074335.

17

https://doi.org/10.1137/1.9781611972597
https://epubs.siam.org/doi/book/10.1137/1.9781611972597
https://epubs.siam.org/doi/book/10.1137/1.9781611972597
https://doi.org/10.1007/978-3-319-20059-0
https://link.springer.com/10.1007/978-3-319-20059-0
https://doi.org/10.1371/journal.pcbi.1005331
https://doi.org/10.1371/journal.pcbi.1005331
https://doi.org/10.1007/978-3-030-77226-0
https://link.springer.com/10.1007/978-3-030-77226-0
https://link.springer.com/10.1007/978-3-030-77226-0
https://doi.org/10.1371/journal.pone.0074335
https://doi.org/10.1371/journal.pone.0074335

	Introduction
	Parameter Estimation as a Constrained Optimisation Problem
	From differential equations to optimisation problems
	ODE case
	PDE case

	Cost functionals
	Continuous cost function
	Discrete cost function
	Regularization

	Computing gradients
	Forward-sensitivity analysis
	ODE case
	PDE case
	Finite differnces
	Automatic differentiation

	Adjoint-senstivity analysis
	ODE example
	Computational efficiency between forward-sensitivities and adjoint-sensitivities
	PDE case

	Optimisation methods
	Local minimisation methods

	Practical considerations
	Parameter bounds
	Choice of ODE solvers
	Application specific loss functions

