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Preface

This bachelor thesis gives an introduction to molecular dynamic simu-
lations, on both theoretical and numerical sides. It builds a connection
between mathematical tools of numerical and stochastic analysis and
physical models. First we build up the needed background in the theory
of SDEs in Chapter 1 and recap the physical model in Chapter 2. The
theory for symplectic numerical schemes and common implementation
techniques are content of Chapter 3. A short discussion of numer-
ical methods for the stochastic Langevin equation follows in Chapter
4. Our main focus relies on the preservation of geometric invariants.
Simultaneous to writing this thesis a C++ plugin for the open source
application Avogadro was build. At the end of Chapter 4 we will test
these techniques on the simulation of a complex molecule.

Notation 0.1. Within this thesis we will use the following Notations.

N number of particles
d space dimension
mi mass of the ith particle
Df Jacobian of f

D2 f Hessian matrix of f
X = (x1, . . . ,xN) ∈ (Rd)N position coordinates
V = (v1, . . . ,vN) ∈ (Rd)N velocity coordinates
Q = (q1, . . . ,qN) ∈ (Rd)N position coordinates
P = (p1, . . . ,pN) ∈ (Rd)N inertia coordinates
T =

∑
i

1
2mi
〈pi,pi〉 kinetic energy

V potential energy
H = T + V Hamiltonian function
γ friction coefficient

(Ω,A,P) a fixed probability space
L2(Ω) the associated Hilbert space on Ω
B(U) Borel-σ-algebra on U

E ( · ) expectation value
Var ( · ) variance
σ(X) by X generated σ-algebra
1A the indicator function of A
W = {Wt}t∈T Brownian motion on Ω

1. Basic concepts of stochastic differential equations

This chapter gives an introduction to stochastic differential equations
(SDEs). For a more consistent introduction to SDEs we refere to text-
books in this field like [Øks03] or [KP92]. For a quick overview we
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recommend [Eva12] or [KK13, Chapter 2]. A more general introduc-
tion to Brownian motion and stochastic integration can be found in
[KS12].
As the solutions of SDEs will be given by stochastic processes, we will
start with some basic definitions and an brief introduction to Brownian
motion, which describes the motion of a particle which chooses its po-
sition randomly at every time. Brownian motion is a classical example
for a stochastic process and plays an important role in stochastic dif-
ferential equations.

1.1. Stochastic Processes.

Definition 1.1 (Stochastic process, [Øks03, Definition 2.1.4]). A stochastic
process is collection of random variables

{Xt : Ω→ Rn}t∈T

parametrized by some index set T and defined for a probability space
(Ω,A,P) and assuming values in Rn equipped with the Borel-σ-algebra
as usual.

In this thesis, the parameter space T will always be [0,∞) or [0, tend].
There are various interpretations of a stochastic process, therefore we
fix some notations.

Notation 1.2. It is common to interpret a stochastic process as a
mapping

X : T × Ω→ Rn : (t, ω) 7→ X(t, ω) := Xt(ω).

If we fix ω ∈ Ω, we get one path of a stochastic process

Xω : T → Rn : t 7→ X(t, ω).

Somehow we could view ω as an individual “particle” or “experiment”
which follows the path Xω.

A modification of a stochastic processes on a set of measure zero has
still much in common with the original process. This leads to the next
definition.

Definition 1.3 (Versions of a stochastic process). Let X and X̃ be
stochastic processes on the probability space assuming values in Rn.

Then X̃ is called a version of X if the are for almost all times equal,

i.e. P(X(t, ·) = X̃(t, ·)) = 1 for all t ∈ T .
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Figure 1. Paths of a Brownian motion.

1.2. Brownian motion. The name of this stochastic process refers
to Robert Brown, how observed in the year 1826 that pollen grains in
a fluid follow a continuous, irregular movement. Einstein [Ein05] and
Smoluchowski independently explained these movements as a result of
collisions with liquid molecules. For example, a colloidal particle of
radius 10−6 m in a liquid, is subject to approcimately 1020 molecular
collissions each second, each of which changes its velocity by an amount
of the order 10−8 m/s. One important consequence of these theoretical
ideas was due to Perrin, who estimated the Avogadro number NA ≈
7 · 1023, which was a major evidence for the atomic model.

One the mathematical side, Norbert Wiener proposed several different
methods to construct a Brownian motion. In honour to his work the
stochastic process of a Brownian motion is also called Wiener process.

Definition 1.4 (Brownian motion). A real-valued stochastic process
{Wt}t∈[0,∞) is called Brownian motion (or Wiener process) if

(i) W0 = 0 almost surely,

(ii) Wt −Ws ∼ N (0, t− s) for all t, s ∈ [0,∞) with t > s,

(iii) For all times 0 < t0 < t1 < · · · < tk the so called increments
Wt1 −Wt0 , . . . ,Wtk −Wtk−1

are independent.

(iv) The sample paths W ω are continuous for almost every ω.

The existence of such a process is not trivial, proofs are given for ex-
ample in [Øks03, Section 2.2] or [Eva12, Section 3.3]. There are differ-
ent ways to define a Brownian motion, some authors neglect the last
condition and instead prove that a continuous Brownian motion exists.
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We just note that a Brownian motion with continuous paths exists and
denote it by W .

Remark 1.5 (Properties of a Brownian motion , [Eva12, Lemma 3.2.3]).
Let us summarize some basic properties of a Brownian motion. For
s, t ∈ [0,∞) holds

• E (Wt) = 0

• Var (Wt) = t

• Cov (Wt,Ws) = E (WtWs) = min{t, s}.
Another remarkable property of the Brownian motion is the following
scaling invariance: If W (t, ·) is a Brownian motion then for all λ > 0
the process

X(t, ω) :=
1

λ
W (λ2t, ω)

is also a Brownian motion. This property is one of the reasons why we
will later introduce a stochastic integral to define stochastic differential
equations.

Before getting too enthusiastic, we also have to note that the paths
of a Brownian motion are only continuous, but almost surely nowhere
differentiable.

Remark 1.6 (Properties of sample paths, [Eva12, Theorem 3.4.2] ). For
each 1

2
< γ ≤ 1 and almost every ω, the sample path W ω is nowhere

Hölder continuous with exponent γ, i.e. for each time s there exists no
constant K such that

∣∣W ω(t)−W ω(s)
∣∣ ≤ K|t− s|γ for all t ∈ [0, T ]

holds. In particular, for almost every ω, the sample path W ω is nowhere
differentiable and is of infinite variation on each subinterval.

Remark 1.7 (Numerical simulation of a Brownian motion). For a simple
simulation of a Brownian motion one could use the Euler-Maruyama
scheme

Wt+h ≈ Wt +
√
h∆h,

where ∆h ∼ N (0, h) are normal distributed random values. This is
directly motivated by Wt −Ws ∼ N (0, t− s) from Definition 1.4 (ii).

1.3. Filtration. A plain stochastic process can behave quite strange.
In particular, the position of a particle can depend not only on some
initial data give for one time, they can also depend on the previous
path. This makes analysis more complicated and is not necessary for
our application. Filtrations represent the information available at cer-
tain times.
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Definition 1.8 (Filtration, [Øks03, Definition 3.2.2]). A filtration (on
(Ω,A)) is a family M = {Mt}t≥0 of σ-algebras Mt ⊆ A such that

0 ≤ s < t ⇒ Ms ⊆Mt

( i.e. {Mt} is increasing). A n-dimensional stochastic process {Mt}t≥0

on (Ω,A,P) is called a martingale with respect to a filtration {Mt}t≥0

(and with resprect to P) if

(i) Mt is Mt-measurable for all t,

(ii) E
(
|Mt|

)
<∞ for all t and

(iii) E
(
Ms | Mt

)
= Mt for all s ≥ t

Definition 1.9 (Adapted processes). A stochastic process X is adapted
to the filtrationM if, for each t ≥ 0, Xt is anMt-measurable random
variable.

Like random variables generate a σ-algebra, each stochastic process
also has a “naturally” associated filtration.

Definition 1.10 (Natural Filtration). Let X be a stochastic process.
Then the Filtration F defined by

Ft = σ
(
{Xs | 0 ≤ s ≤ t}

)

the natural filtration of X.

Clearly X is F adapted, i.e. we have for each process at least one
filtration.

1.4. Conditional expectation. We still need to introduce another
important concept, namely the conditional expectation of a stochastic
process. A simple example is given by the case of a piecewise constant
random variable

Y =
n∑

j=1

aj1Ai
.

For another random variable X, the conditional expectation E
(
X | Y

)

then could been seen as the best approximation of X on the generated
σ-algebra σ(Y ).

E
(
X | Y

)
=





1
P(A1)

∫
A1
X dP , on A1

...
1

P(An)

∫
An
X dP , on An

We see that only the generated σ-algebra matters, thus the definition is
given for σ-subalgebras. The definition now is rather abstract, we will



8 STEFFEN PLUNDER

not give any further explanations here and refer to [Eva12] instead. We
continue with the defining properties of the conditional expectation.

Definition 1.11 (Conditional expectation, [Eva12, Definition 2.6] ).
Let (Ω,A,P) be a probability space and suppose V is a σ-subalgebra
of A. If X : Ω → R. is an integrable random variable, we define the
conditional expectation

E
(
X | V

)

to be a random variable on Ω such that

(i) E
(
X | V

)
is V-measurable and

(ii)
∫
A
X dP =

∫
A

E
(
X | V

)
dP for all A ∈ V .

Remark 1.12 (Existence and Uniqueness of the conditional expectation,
[Øks03, Appendix B]). First of all we shortly ensure existence and
uniqueness. We the define the measure

µ(A) =

∫

A

X dP , for A ∈ V

on V which is absolute continuous w.r.t. P|V , by the Radon-Nikodym
Theorem there exists a V-measurable function F on Ω such that

µ(A) =

∫

A

F dP , for all A ∈ V .

Thus E
(
X | V

)
:= F does the job and according to the Radon-Nikodym

Theorem this function is unique almost surely w.r.t. the measure P|V .

Lemma 1.13 (Properties of the conditional expectation, [Øks03, Ap-
pendix B] ). Suppose X, Y : Ω → Rn are integrable random variables
on (Ω,A,P) and let a, b ∈ R. Then

(i) E
(
aX + bY | V

)
= aE

(
X | V

)
+ bE

(
Y | V

)
(linearity)

(ii) E
(

E
(
X | V

))
= E (X)

(iii) E
(
X | V

)
= X if X is V-measurable

(iv) E
(
X | V

)
= E (X) if X is independent of V

(v) E
(
Y ·X | V

)
= Y E

(
X | V

)
if Y is V-measurable,

where · denotes the usual inner product on Rn.

1.5. The Itô integral. We want add a stochastic term to an ordinary
differential equation. Like the Brownian motion, the paths of solu-
tions also will not necessarily be differentiable. Therefore we chose an
integral representation to set up a stochastic differential equation

X(t, ω) = X(0, ω) +

∫ t

0

a(X(s, ω), s)ds+

∫ t

0

b(X(s, ω), s) dWs,
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where we still need to define the last integral. Later we will use the
differential notation to denote the equation above as

dXt = a(Xt, t) dt+ b(Xt, t) dWt.

The definition of a stochastic integral is somehow involved and there
exist other useful stochastic integrals as well. We choose the integral
preferred by mathematicians, the Itô integral, which has some ana-
lytical advantages. In physics one usually considers the Stratonovich
Integral, which satisfies the usual chain rule. In this section we will
concentrate on the definition of a stochastic integral in the Itô sense.

1.6. Construction of the Itô integral. We will first define the Itô
integral for simple processes and extend this definition onto the class
of square integrable functions. Here we follow [KP92, chapter 3.2].

Definition 1.14 (Progressively measurable processes, [KP92, Section
3.2]). Suppose we have a probability space (Ω,A,P), a Wiener process
W and an increasing family (At)t≥0 of σ-subalgebras of A such that
Wt is At-measurable and almost surely hold

E
(
Wt | A0

)
= 0 and E

(
Wt −Ws | As

)
= 0,

for all 0 ≤ s ≤ t. For 0 < T < ∞ we define a class L2
T of functions

f : [0, T ]× Ω→ R satisfying

(i) f is jointly B([0, T ])×A-measurable,

(ii)
∫ T

0
E
(
f(t, ·)2

)
dt <∞,

(iii) E
(
f(t, ·)2

)
<∞ for each 0 ≤ t ≤ T,

(iv) f(t, ·) is At-measurable for each 0 ≤ t ≤ T .

In addition we consider two functions in L2
T to be identical if they are

equal for all (t, ω) except possibly on a subset of dt×P-measure zero.
The scalar product in this space is defined by

〈f, g〉2,T :=

∫ T

0

E
(
f(t, ·)g(t, ·)

)
dt.

Remark 1.15. The space
(
L2
T , 〈·, ·〉2,T

)
is a complete Hilbert space. We

denote the norm on this space as ‖·‖2,T is has the form

‖f‖2,T =

∫ T

0

E
(
f 2(t, ·)

)
dt.

Definition 1.16 (Space of step functions). A function f ∈ L2
T that

can be represented as

f(t, ω) =
n∑

i=0

fj(ω) · 1[ti,ti+1](t).
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for a partition 0 = t0 < · · · < tn+1 = T is called a step function. We
denote the subspace of step functions in L2

T by S2
T

Lemma 1.17. S2
T is dense in L2

T .

Sketch of the proof. The main idea is to apply the dominated conver-
gence theorem twice. First to show that the set of mean square continu-
ous functions lies dense in L2

T and then to approximate these functions
by equidistant step functions. See [KP92, Lemma 3.2.1] or [KS12, Sec-
tion 3.2, Proposition 2.8] for details. �

We now want to define the Itô integral on S2
T and extend the definition

onto L2
T .

Definition 1.18 (Itô integral for step functions, [KP92, Page 84]). For
f ∈ S2

T we define the Itô integral for step functions by

I (f) (ω) :=
n∑

i=1

fj(ω) ·
(
Wtj+1

(ω)−Wtj(ω)
)
.

Later we will use the notation∫ T

0

f(t, ω) dWt := I (f) (ω).

To extend the linear functional I(·) onto L2
T we have to check that for

any convergent sequence of step functions, the integral also converges
against a unique random variable. Therefore we need to prove the Itô
isometry for step functions.

Theorem 1.19 (Basic properties of the Itô integral for step function,
[Eva12] 4.2.3). For all constants a, b ∈ R and for all G,H ∈ S2

T , we
have:

(i) I (f) is AT -measurable.

(ii) I (aG+ bH) = a I (G) + b I (H) almost surely

(iii) E
(
I (G)

)
= 0

(iv) E
(

I (f)2
)

=
∫ T

0
E
(
f(s, ·)2

)
ds

Rewriting (iv) gives the so called Itô isometry
∥∥I (f)

∥∥2

L2(Ω)
=‖f‖2

2,T .

Proof. (i) Let f ∈ S2
T be a step function corresponding to a partition

0 = t1 < t2 < · · · < tn+1 = T .
By Definition 1.14 (iv) we have for each j = 1, 2, . . . , n that
fj = f(tj, ·) is Atj -measurable and again by Definition 1.14 we also
know that the increments Wtj+1

−Wtj are Atj+1
-measurable.

The product fj
(
Wtj+1

−Wtj

)
is also AT -measurable, since we have an
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increasing filtration, i.e. Atj ⊂ Atj+1
⊂ AT . As a sum of measurable

function, I(f) is also AT measurable.

(ii) The linearity follows by algebraic operations.

(iii) By the Cauchy-Schwarz inequality we have

E
(∣∣I(f)

∣∣
)
≤

n∑

j=1

√
E
(
f 2
j

)
·
√

E
((
Wtj+1

−Wtj

)2
)
<∞,

since fj is mean-square integrable by Definition 1.14 (iii) and the incre-
ment of a Brownian motion is normal distributed with variance |t− s|
by Definition 1.4. Hence is also mean-square integrable.

Using Lemma 1.13 (iii) and (v) we get

E
(
I(f)

)
=

n∑

j+1

E
(
fj · (Wtj+1

−Wtj)
)

=
n∑

j+1

E
(
fj · E

(
Wtj+1

−Wtj

∣∣Aj
))

=
n∑

j+1

E
(
fj
)

E
(
Wtj+1

−Wtj

∣∣Atj
)

︸ ︷︷ ︸
=0, by Definition 1.14 (iv).

= 0.

(iv) We next compute the variance. Here we use that fifj·
(
Wtj+1

−Wtj

)

are Atj -measurable for any i < j. We get

E
(

I (f)2
)

=
n∑

j=1

E
(
f 2
j (Wtj+1

−Wtj)
2
)

+ 2
n∑

j=1

n∑

i=j+1

E
(
fjfi(Wtj+1

−Wtj)(Wti+1
−Wti)

)

=
n∑

j=1

E
(
f 2
j

)
E
(
(Wtj+1

−Wtj)
2
∣∣Atj

)
︸ ︷︷ ︸

=tj+1−tj , by Definition 1.4.

+ 2
n∑

j=1

n∑

i=j+1

E
(
fjfi

)
E
(
Wtj+1

−Wtj

∣∣Atj
)

︸ ︷︷ ︸
=0, by Definition 1.14.

=
n∑

j=1

E
(
f 2
j

)
(tj+1 − tj)

=

∫ T

0

E
(
f(t, ·)2

)
dt.

In the last equation we used the definition of the Riemann integral for
the non-random step function s 7→ E

(
f(s, ·)2

)
. �
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Remark 1.20 (Convergence of the integrals of step functions). Since S2
T

lies dense in L2
T we have for every f ∈ L2

T a Cauchy sequence f (n) ∈ S2
T

of step functions, such that f (n)
L2
T−→ f .

By linearity of I (·) and the Itô isometry from Theorem 1.22 we get

∥∥∥∥I
(
f (n)

)
− I
(
f (n+m)

)∥∥∥∥
2

L2
T

= E

(∣∣∣∣I
(
f (n)

)
− I
(
f (n+m)

)∣∣∣∣
2
)

= E

(∣∣∣∣I
(
f (n) − f (n+m)

)∣∣∣∣
2
)

=
∥∥∥f (n) − f (n+m)

∥∥∥
2

2,T
.

The inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 finally gives
∥∥∥f (n) − f (n+m)

∥∥∥
2

2,T
≤2
∥∥∥f (n) − f

∥∥∥
2

2,T
+ 2
∥∥∥f − f (n+m)

∥∥∥
2

2,T

→ 0, as n,m→∞.

Hence the sequence I
(
f (n)

)
is a Cauchy sequence in the Banach space

L2(Ω). We call the limit I (f) the Itô integral of f . We shortly check
that this definition is independent of the choice of the approximating

sequence f (n). Let f̃ (n) be another approximating sequence, using the
Itô isometry again gives
∥∥∥∥I
(
f (n)

)
− I
(
f̃ (n+m)

)∥∥∥∥
2

L2
=
∥∥∥f (n) − f̃ (n+m)

∥∥∥
2

2,T

≤ 2
∥∥∥f (n) − f

∥∥∥
2

2,T
+ 2
∥∥∥f − f̃ (n+m)

∥∥∥
2

2,T

→ 0, as n,m→∞.

We can now finally define the Itô integral on L2
T .

Definition 1.21 (Itô integral). For f ∈ L2
T , let (fn)n∈N be a sequence

of step function in S2
T with fn

L2
T−→ f . Then we define the Itô integral

over f as the limit
∫ T

0

f(s) dWs := lim
n→∞

I (fn) .

Due to the construction we can restate Theorem 1.22 on L2
T .

Theorem 1.22 (Basic properties of the Itô integral, [KP92] Theorem
3.2.3). The properties (i)-(iv) from Theorem 1.19 also hold on L2

T in-
stead of S2

T .
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Remark 1.23 (Integrating over measurable sets). As usual we define for
a measurable set A ∈ A the integral over A as

∫

A

f(t, w) dWt :=

∫ T

0

1Af(t, w) dWt,

where 1A denotes the indicator function. For A = [t0, t1] we write∫ t1
t0
f(s, ω) dWs(ω) instead.

Theorem 1.24 (Martingale property , [KP92] , Theorem 3.2.5). For
t0 ≤ s ≤ t,≤ T and f ∈ L2

T the integrals

Zt(ω) :=

∫ t

t0

f(s, ω) dWs(ω)

fulfil the martingale property

E
(
Zt − Zs | As

)
= 0.

Sketch. The basic idea is to check the claim for step functions by in-
duction. The fundamental step is to calculate

E

(
f

(n)
j ·

(
W
t
(n)
j+1
−W

t
(n)
j

)∣∣∣∣∣A
(n)
tj

)
= f

(n)
j E

(
W
t
(n)
j+1
−W

t
(n)
j

∣∣∣∣A
(n)
tj

)
= 0.

�

Theorem 1.25 (Continuous sample paths, [Øks03, Theorem 3.2.5] ).
Let f ∈ L2

T . We define a stochastic process Z as

Zs :=

∫ s

0

f(t, ω) dWt(ω)

for s ∈ [t0, T ]. Then there exists a version of Z, which is almost surely
continuous w.r.t. s.

1.7. Stochastic differential equations. Now we can finally define
stochastic differential equations. Since even the Brownian motion is
almost surely nowhere differentiable, the integral representation for dif-
ferential equations is the leading model to define stochastic differential
equations.

Definition 1.26 (Stochastic differential, [Eva12, Definition 4.3.1]).
Suppose that X is a real-valued stochastic process satisfying

X(r, ω) = X(s, ω) +

∫ r

s

f(t, ω) dt+

∫ r

s

g(t, ω) dWt(ω),

for some f ∈ L1
T , g ∈ L2

T and all times 0 ≤ s ≤ r ≤ T . We say that X
has the stochastic differential

dX = f dt+ g dWt

for 0 ≤ t ≤ T .
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We now come to the first large difference between stochastic calculus
in comparison to usual integral rules. Namely the chain and product
rules for Itô integrals.

Theorem 1.27 (Itô’s product rule, [Eva12, Theorem 4.3.3]). Suppose
{

dX1 = f1 dt+ g1 dWt

dX2 = f2 dt+ g2 dWt

, on 0 ≤ t ≤ T,

for f1, f2 ∈ L1
T , g1, g2 ∈ L2

T . Then X1X2 has the stochastic differential

d(X1X2) = X1 dX2 +X2 dX1 + g1g2 dt.

Theorem 1.28 (Itô’s chain rule , [Eva12, Theorem 4.3.1]). Suppose
that X has a stochastic differential

dX = f dt+ g dWt

for some f ∈ L1
T , g ∈ L2

T . Assume that u : R×[0, T ]→ R is continuous

and that its partical derivatives ut = ∂u
∂t
, ux = ∂u

∂x
, uxx = ∂2u

∂x2
exist and

are continuous.
Then Y (t, ω) = u(X(t, ω), t) has the stochastic differential

du(X, t) = ut dt+ ux dX +
1

2
uxxg

2 dt

= (ut + uxf +
1

2
uxxg

2) dt+ uxg dWt.

Proofs could be found in [Eva12].

1.8. Taylor approximation. An application of Itô’s rule gives us

Remark 1.29 (Towards an Taylor expansion, [KP92, Page 163]).
Assume X has the stochastic differential

dX = f dt+ g dWt.

Applying the Itô formula on u(x) = f(x) and u(x) = g(x) for
f, g ∈ C2(R) yields in

f(Xt) = f(X0) +

∫ t

0

f(Xs)
∂f
∂x

(Xs) +
1

2
g(Xs)

∂2f
∂x2

(Xs) ds

+

∫ t

0

g(Xs)
∂f
∂x

(Xs) dWs

and

g(Xt) = g(X0) +

∫ t

0

f(Xs)
∂g
∂x

(Xs) +
1

2
g(Xs)

∂2g
∂x2

(Xs) ds

+

∫ t

0

g(Xs)
∂g
∂x

(Xs) dWs.
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Inserting these equations into the integral equation of X we get

Xt = X0 + f(X0)

∫ t

0

ds+ g(X0)

∫ t

0

dWs +R.

This is a Taylor like extension of Xt. Of cause one could proceed to
apply the Itô formula again and again to obtain higher order extension.
For us this rather simple extension is enough. It leads to the Euler-
Maruyama scheme. Collecting the remaining terms gives

R =

∫ t

0

∫ s

0

L0f(Xz) dz ds+

∫ t

0

∫ s

0

L1f(Xz) dWz ds

+

∫ t

0

∫ s

0

L0g(Xz) dz dWs +

∫ t

0

∫ s

0

L1g(Xz) dWz dWs.

2. The physical background of molecular dynamics

Our goal is to describe the motion of atoms and molecules. In practice
we will use a classical model, which describes the interaction between
particles by given potentials and Newtons laws. The influence of smal-
ler particles is modelled by a stochastic term in the equations of motion.
For an argumentation why this model does not contradict quantum
mechanical basics we refer to [GKZ10] or [FS01].

2.1. Potentials. For each model we have to chose the forces Fi acting
on the i-th particle. It is common to use potentials which depend on
the positions of the particles to describe the forces. The force applied
to each particle then has the form Fi = −∇qi

V , where V is a given
potential function. Usually the potential is separated into two parts
V = Vnon-bonded+Vbonded, where Vbonded is the potential caused by bonds
between atoms and Vnon-bonded describes forces acting between all pairs
of atoms.

2.1.1. The non-bonded potentials. Typical examples for the non-bonded
potentials are the Lennard-Jones potential or the Coulomb potential.
They act between all particles in contrast to bonded potentials. Let
r be the distance between two particles, qi be the electric charge of a
particle and ε, rm are particle depended parameters. Then the poten-
tials have to form:

Lennard-Jones V(r) = ε
((

rm
r

)12 −
(
rm
r

)6
)
,

Coulomb V(r) = 1
4πε

q1q2
r

.

We note that the sum of these potentials are bounded from below, even
if q1q2 < 0.
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2.1.2. The bonded potentials. In view towards molecular simulations
we have to consider a second type of potentials. These potentials also
include the interaction between three and four particles. If two atoms
are bounded the distribution probabilities of their electrons change
and at this level quantum mechanical effects are relevant. To overcome
this, models were developed which try to approximate the quantum
mechanical behaviour. These models include interaction between two,
three and four atoms. They are often called force fields. One has to
consider that currently different models of force fields exist, not only
for atomic interaction, also for the interaction of small groups of atoms.
They all have different strengths and weaknesses.
We summarize the quantitative behaviour of typical potentials. Let r
be the distance between two atoms, θ should denote the angle between
two atoms w.r.t. to a third atom and ω denotes a complex torsion
angle, then typical potentials are

Bond V(r) = c · (r − rmin)2

Angle V(θ) = c · (cos(θ)− 1)
Torsion V(ω) = c1(1− cos(ω)) + c2(1− cos(2ω)) + c3(1− cos(3ω)).

In this thesis we threat these potential models as a black box. We just
assume that the resulting potential is smooth for qi 6= qj and bounded
from below. Simulation results in this thesis are based on the universal
force field [RCC+92].

2.2. Newton. To model just a molecular system no complicated phys-
ics are required, only Newtons equation

d2qi
dt2

=
Fi(q1, . . . ,qN)

mi

=
Fi(Q)

mi

.

The force will be given as the gradient of a potential function depending
only on the positions Fi = −∇qi

V(q1, . . . ,qN). Let pi denote the
inertia of the ith particle, then we can rewrite Newtons equation as a
Hamilton system. The Hamiltonian of the system is given by

H = V + T , with T (Q) =
N∑

i=1

1

2mi

‖qi‖2
2 .

The Hamilton system

dqi
dt

= ∇pi
H(Q,P),

dpi
dt

= −∇qi
H(Q,P)

is equivalent to Newtons law. Since the Hamilton function is time
independent, it is just the total energy of the system.
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Mathematical Interlude I. Since we are mathematicians, we need to
ensure the existence and uniqueness of solutions. Some of the potentials
have singularities. The reason why we still get a unique solution is
simple: If a solution would approach a singular point of the potential,
the energy will become infinitely large, but that is a contradiction to
the conservation of energy.

Definition 2.1 (Assumptions on the Hamiltonian system). Let

D = {(Q,P) ∈ R2dN | qi 6= qj for i 6= j}
be the set of non overlapping states. Obviously this set is open.

The potential function V : D → R should have the fulfil

• V ∈ C2(D),

• V is bounded form below,

• V depends only on the positions Q,

• for each sequence yk, with

yk → y ∈ ∂D as k →∞,
the potential function has a blow-up, i.e.

V(yk)→∞, as k →∞.

Then H : D → R : (Q,P) 7→ V(Q) + T (P) is a separable Hamilton
function. To shorten the notation we may write y(t) = (Q(t),P(t))
instead and define

J =

(
0 I
−I 0

)
,

the Hamilton system then transforms to

ẏ = −J1∇H(y).

Lemma 2.2 (Existence and Uniqueness in the deterministic case). The
solutions of the system defined in Definition 2.1 exists and are unique.

Proof. We fix some initial states y0 ∈ D. Since the Hamiltonian H
is in C2(D), the right hand side of the Hamilton system is continuous
differentiable, hence locally Lipschitz continuous.

By Picard-Lindelöf a local solution of the initial problem exists, we call
it y(t) = (Q(t),P(t)). By a Corollary of the Picard-Lindelöf Theorem
one of the following three cases holds true.

(i) Global solution case: The solution exists for all times t > 0.

(ii) Boundary case: For some finite time t+ the solution exists and

lim
t→t+

y(t) ∈ ∂M



18 STEFFEN PLUNDER

(iii) Blow-up case: For some finite time t+ the solution exists and

lim
t→t+

∥∥y(t)
∥∥

2
=∞

We prove that we are in the first case by contradiction to the conser-
vation of energy.

Conservation of energy:

dH
dt

=
dN∑

i=1

∂H
∂qi

dqi
dt

+
dN∑

i=1

∂H
∂pi

dpi
dt

+ ∂H
∂t

=
dN∑

i=1

−dpi
dt

dqi
dt

+
dN∑

i=1

dqi
dt

T dpi
dt

+ ∂H
∂t

= ∂H
∂t

= 0

(1)

Assume: The boundary case holds true. In this case we can assume that
the distance between two particles becomes zero lim qi(t) − qj(t) = 0
Then also H →∞ in contradiction to the conservation of energy (1).

Assume: The blow-up case holds true.

1. Case:
∥∥pi(t)

∥∥→∞, as t→ t+ <∞.
Since T =

∑N
k=1

‖pk‖2
mi

, we have a blow-up in the kinetic energy as well

T (Q(t),P(t)) →∞. But since the potential V is bounded from below
we have again a contradiction to the conservation of H = T + V (1).

2. Case:
∥∥qi(t)

∥∥→∞, as t→ t+ <∞.
By definition of the kinetic energy T we have the relation q̇i(t) = pi

mi
,

hence if the positions increases in finite time towards infinity, then also
the inertia does and we are in case 1 again.

In conclusion we are in the global solution case and the claim holds. �

Integration methods of the deterministic Hamilton system are discussed
in §3. Before we want to introduce another fundamental equation for
molecular dynamics simulations.

2.3. The Langevin equation. For γ ∈ (0, 1) and σ ∈ RdN×dN , the
Langevin equation

dxi = vi dt,

dvi =
1

mi

Fi dt− γvi dt+ σ dWt

models the movement of particles in a fluid of constant temperature.
We use a different notation to underline that due to the friction this
system cannot be written as a Hamiltonian system.
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The motivation to include additional terms into our model is, that
due to the high number of fluid molecules, we are simply not able
to capture the initial conditions. Besides these deterministic models
would be by far to large for many practical computations. Instead we
consider an ensemble of systems, i.e. we fix only the temperature of
the initial states. An experiment ω then represents a particular initial
state. Before we give some details on the fixed temperature ensemble
we want to present a heuristic approach towards the Langevin equation.

The friction term. Each particle is surrounded by many small fluid
molecules. The faster the particles moves, the more fluid molecules are
in the path of the particle. Therefore the more collisions are expected.
To model these collisions the Langevin equations includes an additional
friction term−γvi,. The coefficient γ can be chosen according to Stokes
formula as γ = 6πηR, where R denotes radius of the particles and η
represents the viscosity of the fluid [LL87, §60].

The diffusion term. The last term represents the influence of thermal
fluctuation. As a consequence of the equipartition law

1

2
mE

(
v2
)

=
1

2
kT,

the thermal velocity of the particles is given by E
(
v2
)

=
√

kT
m
. In the

case of no interaction between the particles we would assume that

Var
(
‖V‖

)
=
kT

m
(2)

holds. In the next section we compute the variance of the Langevin
equation. This will lead to the relation

σii =
2γkT

mi

Mathematical Interlude II. We shortly analyse the case of no inter-
molecular interactions.

Example 2.3 (Ornstein-Uhlenbeck process , [Eva12], Example 5.6).
For simplicity we consider the one dimensional case





dX = V dt,

dV = −γV dt+ σ dW,

X(0) = X0, V (0) = V0.

The velocity process. We start with the behaviour of the velocity pro-
cess. The solution is given by

V (t) = e−γtV0 + σ

∫ t

0

e−γ(t−s) dWs.
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We use the basic properties in Theorem 1.22 to calculate the expected
velocity

E
(
V (t)

)
= e−γt E (V0)

and

E
(
V (t)2

)
= E

(
e−2γtV 2

0 + 2σe−γtV0

∫ t

0

e−γ(t−s) dWs

+σ2

(∫ t

0

e−γ(t−s) dWs

)2



= e−2γt E(V 2
0 ) + 2σe−γt E (V0) E

(∫ t

0

e−γ(t−s) dWs

)

+ σ2

∫ t

0

e−2γ(t−s) ds

= e−2γt E
(
V 2

0

)
+
σ2

2γ
(1− e−2γt).

By Var
(
V (t)

)
= E

(
V 2(t)

)
− E

(
V (t)

)2
we get

Var
(
V (t)

)
= e−2γt Var (V0) +

σ2

2γ
(1− e−2γt).

Assuming a finite variance of V0 we get
{

E
(
V (t)

)
→ 0

Var
(
V (t)

)
→ σ2

2γ

, as t→∞.

In particular we see a balance between friction and random fluctuation.
If we insert this result into (2) we get σ2

2γ
= kT

m
, hence σ = 2γkT

m
.
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The position process. Knowing the velocity process, we can analyse the
positions. The process is given by

X(t) = X0 +

∫ t

0

V (s)ds.

The expected value is given by

E
(
X(t)

)
= E (X0) + E (V0) e−γt.

A lengthy calculations also gives the value of the variance as

Var
(
X(t)

)
= Var (X0) +

σ2

γ2
t+

σ2

2γ3

(
−3 + 4e−γt − e−2γt

)
.

Some numerical simulations are presented in Figure 2 and Figure 3.

Figure 4. A polymer with the label ’2mk3’ [RLG+14]
taken from the RSCB-Database . The red helix repres-
ents the secondary structure of this molecule.

2.4. Polymers. Polymers are a special class of molecules. These are
molecules composed out of many monomers, simple groups of atoms.
A more complex example is given in Figure 4. To simulate polymers an
usual approach is to model each monomer of the chain as one particle
and introduce intermolecular potentials or fixed constrains between the
particles. In this thesis we concentrate on a molecular simulation of
polymers, i.e. we simulate the molecule without any further simplific-
ations of the model.

3. Numerical Methods for Molecular Dynamics

The goal of molecular dynamical simulations is to solve the associated
deterministic Hamilton system. The main difficulties are the high di-
mension of the phase space, the long computation time of the forces
and the presence of fast oscillations. Therefore lower order methods
are often preferred, since these only require one force evaluation per
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step. Our main candidate is the Störmer-Verlet scheme. Later we dis-
cuss splitting methods and implementation techniques to calculate the
forces. The numerical simulations are computed in high dimensions
and with the molecular model of the Universal Force Field [RCC+92].

Since we simulate a Hamilton system, a geometric integration approach
is reasonable. The book of Hairer, Lubich and Wanner on geometric
integration [HLW06] is a fantastic resource for both theory and ap-
plication of this field. A more specific view on molecular dynamical
simulation is presented in [GKZ10].

In general, a good choice is given by the Störmer-Verlet scheme. We
will discuss alternatives and point out the reasons why Störmer-Verlet
perform so well.

Notation. We only consider one-step methods. The numerical flow Φh

maps an initial state x0 to the numerical approximation of the system
after time h, i.e. Φh(x0) = x1. In contrast, the flow ϕt maps an initial
state x0 to the exact solution at time t, i.e. ϕt(x0) = x(t).

3.1. Nyström methods. To handle differential equations of the type
ẍ = f(x) we apply two Runge-Kutta methods to each component. The
resulting methods are called Nyström methods. We first introduce
partitioned Runge-Kutta methods, which are applied to slightly more
general systems of the form

ẋ = g(t,x,v)

v̇ = h(t,x,v).

Definition 3.1 (Partitioned Runge-Kutta Methods). For given coef-

ficients aij, âij, bi and b̂i a partitioned Runge-Kutta method is given
by

ki = g(x0 + h

i−1∑

j=0

aijkj,v0 + h

i−1∑

j=0

âijlj)

li = h(x0 + h

i−1∑

j=0

aijkj,v0 + h

i−1∑

j=0

âijlj)

x1 = x0 +
s∑

i=0

biki, v1 = v0 +
s∑

i=0

b̂ili.

It is convenient to write the coefficients into so called Butcher Arrays.
In these Arrays the coefficients are arranged as illustrated below.
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In the case of partitioned methods we use two arrays to write down the
coefficients.

c1 a11 a12 a13

c2 a21 a22 a23

c3 a31 a32 a33

b1 b2 b3

ĉ1 â11 â12 â13

ĉ2 â21 â22 â23

ĉ3 â31 â32 â33

b̂1 b̂2 b̂3

Since we consider an autonomous ODE system, the ci coefficients are
not important for us. Next we consider a simple looking scheme with
various important properties.

Method 3.2 (Störmer-Verlet). An order 2 method is given by the
coefficients:

0 0
1 1/2 1/2

1/2 1/2

1/2 1/2

1/2 1/2 0
1/2 1/2

Fitting this method into the framework of partitioned Runge-Kutta
methods gives us access to general order conditions. Next we specialize
these methods to our second order system of the form ẍ = f(t,x, ẋ),
hence we apply a partitioned Runge-Kutta method to ẋ = v, v̇ =
f(t,x,v). Due to the simplicity of the first equations some implicit
relations cancel. The resulting methods are called Nyström methods.
We here restrict the definition to autonomous systems.

Method 3.3 (Autonomous Nyström Methods). Let ci, b̄ij, āij and b̂ij, âij
be real coefficients. A Nyström methods for the solution of ẍ = f(x, ẋ)
is given by

li = f(x0 + cihv0 + h2

s∑

j=1

āijlj,v0 + h

s∑

j=1

âijlj)

x1 = x0 + hv0 + h2

s∑

i=1

b̄ili, v1 = v0 + h

s∑

i=1

b̂ili.

To transform partitioned Runge-Kutta methods, the additional coeffi-
cients can be calculated as

āij =
s∑

k=1

aikâkj, b̄i =
s∑

k=1

bkâki.

We finaly get an explicit method if we apply the Störmer-Verlet method
3.2 on a second order system.
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Method 3.4 (Störmer-Verlet for second order systems).

l1 = f(x0), l2 = f(x0 + hv0 +
1

2
h2f(x0)) = f(x1),

x1 = x0 + hv0 +
1

2
h2f(x0), v1 = v0 +

1

2
h(f(x0) + f(x1)).

3.2. Symplectic Integration of Hamilton systems. The flow of
a Hamilton system has some important invariants. For example, the
Liouville Theorem implies that volumes in phase space are preserved.
Since these invariants are fundamental to each system, we aim at re-
specting them also numerically. The condition of preserving certain
properties is not equivalent to a small local or global error. We will see
that many popular numerical methods fail at this point.

Example 3.5 (Hamiltonian oscillator). As a first example we plot
the numerical flow and the total energy of three numerical integrators
applied to an one-dimensional oscillator

{
q̇ = p

ṗ = −q.

Explicit Euler Implicit Euler Symplectic Euler
pi+1 = pi − hqi pi+1 = 1/1+h2(pi − hqi) pi+1 = pi − hqi
qi+1 = qi + hpi qi+1 = 1/1+h2(qi + hpi) qi+1 = qi + hpi+1

Stepsize: 0.05 Stepsize: 0.05 Stepsize: 0.05
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Ekin

Epot

H

Figure 5. The explicit Euler method results in a dila-
tion of the phase space. The energy increases.

All integrators are of first order, the implicit Euler method is even
transformed to an explicit method, but only the symplectic variant
does nearly preserve the volume in phase space and the total energy.
Especially the long time behaviour is better predicted by the symplectic
method. Choosing different time steps or higher order Runge-Kutta
method does not change the principal behaviour.
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Figure 6. The implicit Euler method has a reversed behaviour.
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Figure 7. Finally the symplectic Euler does a good job
in both plots.

After this first observations, we start with the abstract definition of a
symplectic mapping. In a two dimensional phase space a symplectic
map will be exactly a volume preserving diffeomorphism. In higher
dimensions the sum of projected orientated areas will be preserved.
There exists a more general concept of symplectic manifolds, we here
only consider the compact manifold D with coordinates arranged like
(Q,P). Together with the following differential 2-form

w2 = dP ∧ dQ =
N∑

i=1

dpi ∧ dqi,

the pair (R2dN , w2) is called a symplectic manifold. A map is called
symplectic if it preserves this structure. We are interested in explicit
formulas. Let ξ = (ξq, ξp),η = (ηq,ηp) ∈ T(Q,P ) M be two tangent
vectors at (Q,P), then the explicit formula for w is given by

w(ξ,η)
∣∣
(Q,P)

=
dN∑

j=1

det

(
ξqj ηqj
ξpj ηpj

)
=

dN∑

j=1

ξqjη
p
j − ξpj ηqj .

In matrix notation we get

w(ξ,η)
∣∣
(Q,P)

= ξTJη, where J =

(
0 I
−I 0

)
.
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Since w does not depend on the position in phase space (Q,P), we can
omit the position in our notation and just write w instead of w |(Q,P).
Therefore the value of w will be invariant under a differentiable map if

w(ξ,η) = w( Dg(Q,P)ξ, Dg(Q,P)η)

holds.

Definition 3.6 (Symplectic Mapping). Let g : U → R2dN be a differ-
entiable map, we call it symplectic, if

Dg(Q,P)T ◦ J ◦Dg(Q,P) = J

holds.

Let ϕt be the flow of a Hamilton system. Using the matrix J from
above we can rewrite the Hamilton system as

ẏ = J−1∇H(y)

Theorem 3.7 (Poincare 1899, [HLW06, Theorem VI.2.4] ). LetH(Q,P)
be a twice continuously differentiable function on U ⊂ RdN open. Then,
for each fixed time t, the flow ϕt is a symplectic transformation wherever
it is defined.

Proof. The derivative of ϕt(Q0,P0) with respect to the initial value
solves the variational problem

ψ̇(t) = −J D2H(ψ(t)), ψ(0) = I

Due to the assumptions, a unique solution exists. We get Dϕt = ψ.

For t = 0 we have DϕTt J Dϕt = J by the initial conditions of the
variational problem. Now we will prove that the left term is constant.
In the last expression we will use (−J)T = J .

d
dt

(
DϕTt J Dϕt

)
= d

dt

(
ψ(t)TJψ(t)

)

= ψ̇(t)TJψ(t) + ψ(t)TJψ̇(t)

=
(
−J D2H(Φ(t))

)T
Jψ(t) + ψ(t)TJ

(
−J D2H(ψ(t))

)

= D2H(ψ(t))JJψ(t) − ψ(t)TJJ D2H(ψ(t))

= 0

In the last expression we used (−J)T = J . In conclusion the expression
is constant which gives the claim. �

Having seen that the Hamilton flow is symplectic, we are now could
ask the same question for any numerical integrator.

Definition 3.8 (Symplectic scheme). We call a numerical integrator
symplectic if for any step size h > 0 the numerical flow Φh is symplectic.
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Example 3.9 (Symplecticity of the symplectic Euler and Störmer-
-Verlet schemes). The symplectic Euler method and the Störmer-Verlet
scheme are both symplectic.

Before we compare various methods we will turn our attention towards
backward analysis of symplectic methods. Symplectic methods will
not conserve the total energy, but conserve the energy of a modified
Hamilton equation. We will see that the modified Hamilton function
could be written in terms of the original Hamiltonian.

3.3. Backward error analysis for symplectic methods. Our first
experiments already pointed out that symplectic methods also preserve
the Hamiltonian of a system approximately. We will prove that sym-
plectic methods in fact solve a modified Hamiltonian system, therefore
preserve the modified Hamiltonian.

Here we again follow Hairer et al [HLW06, Section IX.3].

Backward error analysis. Instead of considering the error between nu-
merical solutions and the exact solutions,in backward analysis we con-
sider the difference between the exact solutions of the original equation
and the exact solutions of a modified equation. Let yn be the numerical
solution, for a step size h then the modified equation is defined as

{
˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . .
˙̃y(nh) = yn for all j = 0, 1, . . . .

The solution should coincides with the numerical solution, but we first
need to find the missing functions fj. We cannot expect the series
f + hf2 + h2f3 + . . . to converge, instead the series is considered as a
asymptotic series and we truncate at some order. The next theorems
will show that a global modified equation for symplectic methods can
be found and is Hamiltonian again.

Theorem 3.10 (Order of the modified equation). Suppose that the
method yn+1 = Φh(yn) is of order p, i.e.

Φh(y) = φh(y) + hp+1δp+1(y) +O(hp+2),

where φt(y) denotes the exact flow of ẏ = f(y), and hp+1δp+1(y) the
leading term of the local truncation error. The modified equation then
satisfies

˙̃y = f(ỹ) + hpfp+1(y) + hp+1fp+2(ỹ) + . . . , ỹ(0) = y0

with fp+1 = δp+1(ỹ).



28 STEFFEN PLUNDER

Proof. First we need to find candidates for the functions fj, therefore
we write down a Taylor-expansion of the solution of the modified equa-
tion

ỹ(t+ h) = y + h
(
f(y) + hf2(y) + h2f3(y) + . . .

)

+
h2

2!

(
f ′(y) + hf ′2(y) + . . .

) (
f(y) + hf2(y) + . . .

)
+ . . . .(3)

We also expand the numerical flow as a Taylor-series, where dj denotes
some function normally composed by terms in f, f ′, f ′′, . . .

Φh(y) = y + hd1(y) + h2d2(y) + h3d3(y) + . . . .

Next we compare the coefficients of both expansions and simply choose
the functions fj for j = 2, . . . , p such that the coefficients coincide in
both extensions coincide. For example the first defining equations are

f2(y) = d2(y)− 1

2!
f ′(y)f(y)

f3(y) = d3(y)− 1

3!
(f ′′(y)f(y)f(y) + f ′(y)f ′(y)f(y))

︸ ︷︷ ︸
= 1

3!

∂3ϕh(y)
∂h3

|h=0

− 1

2!
(f ′(y)f2(y) + f ′2(y)f(y))

︸ ︷︷ ︸
:=R3(f,f2)(y)

.

We note that the second terms on the right hand side are equal to the
Taylor expansion of the exact solution. We define Rj(f, f2, . . . , fj−1)
as the additional terms on the left hand side, which depend only on
f, f2, . . . , fj−1. We note that Rj(f, 0, 0, 0, . . . ) = 0.

Since Φh is an order p method we get for j = 1, 2, . . . , p

dj(y) =
1

j!

∂jΦh(y)

∂hj

∣∣∣∣
h=0

=
1

j!

∂jϕh(y)

∂hj

∣∣∣∣
h=0

To shorten notation we denote the additional terms in the expansion
of ỹ in (3) by Rj(f, f2, . . . , fj−1). We get

fj = dj −
1

j!

∂jϕh(y)

∂hj

∣∣∣∣
h=0

−Rj(f, . . . , fj−1)(y).

For j = 2 the rest term R2(f) is zero, therefore f2 = 0.
Now by induction we get that all fj vanish for j = 2, . . . , p, since
Rj(f, 0, 0, 0, . . . ) = 0 for all j = 2, . . . , p. �

For the next theorem on local existence of a Hamiltionian modified
equation we first need the following lemma. Note that these theorems
are taken from [HLW06], we only sometimes restricted the domain is
additionally restricted to D, which is mentioned in the last paragraph
of Section IX.3.1 by the authors therein.
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Lemma 3.11 (Integrability Lemma, [HLW06] VI.2.7). Let D ⊂ Rn

be open and f : D → Rn be continuously differentiable, and assume
that the Jacobian Df(y) is symmetric for all y ∈ D. Then, for every
y0 ∈ D there exists a neighbourhood and a function H(y) such that

f(y) = ∇H(y)

on this neighbourhood. In other words, the differential from f1(y) dy1+
. . . + fn(y) dyn = dH is a total differential.

Proof. Assume y0 = 0, by shifting the domain D. Consider a ball
around y0 which is contained in D. On this ball we define

H(y) =

∫ 1

0

yTf(ty) dt+ const.

Due to the symmetry assumption ∂fi
∂yk

= ∂fk
∂yi

we have

∂H

∂yk
(y) =

∫ 1

0

(
fk(ty) + yT ∂f

∂yk
(ty)t

)
dt =

∫ 1

0

dtfk(ty)

dt
dt = fk(y),

which proves the statement. �

Theorem 3.12 (Existence of a Local Modified Hamiltonian, [HLW06]
Theorem IX.3.1). If a symplectic method Φh(y) is applied to a Hamilto-
nian system with a smooth Hamiltonian H : Rn → R, the the modified
equation is also Hamiltonian. More precisly, there exists smooth func-
tion Hj : Rn → R for j = 2, 3, . . . , such that

fj(y) = J−1∇Hj(y).

Proof. The proof is done by induction again. For j = 1 the claim is
true since, we have f1 = f in the standard modified equation, hence
f1(y) = J−1∇H(y)

Now assume that fj = J−1∇Hj for j = 1, 2, . . . , r.
We consider the truncated modified equation

˙̃y = J−1∇(H(y) + hH2(y) + . . . hr−1Hr(y)).

Let ϕr,t denote the flow of this truncated system, then numerical flow
satisfies

Φh(y0) = ϕr,t(y0) + hr+1fr+1(y0) +O(hr+2),

and also

Φ′h(y0) = ϕ′r,t(y0) + hr+1f ′r+1(y0) +O(hr+2).

We now use the identity ϕ′r,h(y0) = I +O(h). Since the method Φh is
symplectic we have

J = Φ′h(y0)TJΦ′h(y0) = J + hr+1
(
f ′r+1(y0)TJf ′r+1(y0)

)
+O(hr+2).
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Consequently, the matrix Jf ′r+1(y) is symmetric and the existence of
Hr+1(y) satisfying fr+1(y) = J−1∇Hr+1(y) follows from the Integrabil-
ity Lemma 3.11. �

Example 3.13 (Modified Hamiltonian of the Störmer-Verlet scheme).
Since the proof is in principle constructive, it is possible to calculate
the modified Hamiltonians for a given scheme. Explicit formulas for
the modified Hamiltonian, derived by the theory of Butcher trees, are
available [HLW06, Theorem IX.9.8]. The resulting modified Hamilto-
nian is given by

H̃(Q,P) = H(Q,P) + h2(− 1

24
(M−1P)T ∂

2V
∂q2

(Q,P)M−1P

+
1

12
(∇QV(Q))TM−1∇QV(Q)) + . . .

3.4. Time step control. Changing the time step size during the sim-
ulation will still remain the symplecticity of the numerical method. In
practice time step control can lead to a significant change of the modi-
fied equation and therefore the global error in energy can become even
worst. The next example illustrates the effect.

Example 3.14 (Bad time steps). We again consider the pendulum
system. To illustrate the effect of changing time step sizes we compare
a the following two time stepping strategies

h1(t) = 1, h2(t) =

{
1, if tm od2 > 0.5

0.73, else.

On a first view the second choice seems to be more accurate, but in
fact simulation results show that the contrary is true.
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Figure 8. Due to the large step size, the solution is not
correct, but the energy is still stable.

It is possible to develop stable adaptive energy conserving methods,
but special care is necessary.
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Figure 9. The second strategy h2 fails totally at this example.

3.5. Higher order schemes. There exists higher order symplectic
Nyström methods. Since the frequencies of a molecular system are usu-
ally high compared to the time integration step, higher order schemes
are no real benefit, since the need more force computations. We do not
elaborate on this, but refer to [GKZ10] and [HLW06].

3.6. The Impuls method / RESPA-method. In our final Hamilton
system for a molecule oscillations with different frequencies arise. Since
our time steps have to be smaller than the highest frequency we are
rather limited in choosing a step size. We could avoid this by us-
ing a splitting method. This method is called the Impuls method
[HLW06]. We will split the force into two forces f = f [fast] +f [slow]. Let

Φ
[fast]
h ,Φ

[slow]
h denote the numerical flow function of the Störmer-Verlet

scheme 3.2 applied to the fast force and the slow force respectively.

Method 3.15 (Impuls method). For a fixed number n > 0 the Impuls
method is composed as

ΦImpuls
h = Φ

[slow]
h/2 ◦

(
Φ

[fast]
h/n

)n
◦ Φ

[slow]
h/2 .

In our example of a molecule simulation, we could set

f [fast] = −∇Vbonded, f [slow] = −∇Vnon-bonded.

3.7. Implementation. Since the runtime of any molecular dynamic
simulation will be governed by the speed of the force calculation, we
will give some details on how to implement a force field effectively and
which simplifications are common. Main references for this section are
[GKZ10] and [All04].

3.7.1. Pair interaction, Cut-off and Linked Cell method. One of the
main issues is the Lennard-Jones potential, since it requires to compute
the distances between all pairs of atoms. Newtons third law implies
Fij = −Fji, thus only one gradient calculation for each pair is required.
If we additionally modify the potential such that −∇VL-J(r) = 0 for r >
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rcut-off, the runtime can be optimized further. The modified potential
function is then

VL-J,Cut =

{
VL-J(r), if r < rcut-off,

VL-J(rcut-off), if r > rcut-off.

To deicide effectively for which pair the gradient must be computed
the method of linked cells is reasonable. We decompose the domain
into small cubes, then only the interactions between particles of neigh-
bouring cells are taken into account (see Figure 10). In [GKZ10] this
method is called the linked cell method, since linked list structures are
useful to store the particles of each cell in. At each frame (or less of-

Figure 10. The cut-off balls are included in the neigh-
bourhood of the current cell.

ten) one builds up the linked list structure, which takes O(N) time.
If the particles are uniformly distributed the runtime has in the three-
dimensional case the form

c1 ·N + c2 ·
(

8 · N

Ncells

)2

·Ncells + c3,

where c1, c2, c3 are implementation depended coefficients.

To obtain an energy conserving scheme the edges of the cells have to
be larger than the cut-off radius rcut-off to ensure the continuity of H.

3.8. Numerical results for the deterministic model. Now we
present simulation result of full molecule (see Figure 11) to ensure that
the theory of symplectic integration has practical results.
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Figure 11. A randomly chosen molecule with the PDB
ID “1skl” [AWS+05] from the RCSB online database.
The molecule contains 144 atoms and 149 bonds.
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Figure 12. Both the energy and the local errors in-
crease exponentially. Therefore even small time steps
will not lead to a stable behaviour for long time scales.
In the simulation high frequencies arise and the atom
distances are critical small.

To show the particular strength we repeat these simulations using a
larger time step. Here we only compare both euler methods.

4. Quasi-symplectic methods for Langevin Equations

In this section we present the generalisation of symplectic methods for
numerical solutions of SDEs. The concept of quasi symplectic methods
has been taken from a publication of Milstein et al [MT03].

The Euler-scheme has a stochastic counterpart, namely the Euler-
Maruyama-scheme. We also obtain a Verlet like integrator using oper-
ator splitting.
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Symplectic Euler
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Figure 13. The symplecitc Euler method does nearly
preserve the energy and has a stable behaviour.
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Figure 14. Finally the Verlet method could archive a
smaller local error with the same number of force calcu-
lations.
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Figure 15. A step size of h = 10−2 ns leads to an ex-
plosion of the explicit euler approximation, whereas the
symplectic method still remains stable with a larger step
size of h = 10−1 ns.

Method 4.1 (Euler-Maruyama). An approximate of the solutions of
dX = a(X, t) dt+ b(X, t) dWt is given by

X1 = X0 + a(X0, t)h+ b(X, t)
√
h∆h.
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Figure 16. Outtakes: That is how it looks like, when
the energy is exploding, i.e. the bonds

The additional term is a first order approximation of the increments of
the Brownian motion

Wt+h −Wt ∼ N (0, h)

where ∆h are normal distributed random numbers.

Definition 4.2 (Mean square consistency). Let X(t, ω) be the exact
solution of a given SDE and let Xh(t, ω) be the numerical approxima-
tion. We call a method mean square consistent of order p ∈ R if

E
(
|Xh −X|2

)
< K · hp.

There are other concepts of consistency as well. In particular, mean
square consistency does insure a path wise approximation.

4.1. First order quasi-symplectic methods. We aim at solving the
Langevin equation. In order to reuse ideas from the last section on
symplectic methods we rewrite the Langevin equation in a Hamilton
like notation. Let M be the mass matrix with diagonal entries M3i,3i =
M3i+1,3i+1 = M3i+2,3i+2 = mi. In the new variables, the equation reads

dQ = ∇PH(Q,P) dt

dP = −∇QH(Q,P) dt− γMP dt+ σ dWt.

In the deterministic case, symplectic methods where necessary to pre-
serve the fundamental symplectic structure. Since the flow of the
Langevin equation is not symplectic, we introduce the idea of quasi-
symplectic methods from Milstein [MT03]. Before explaining the idea
we present the definition.

Definition 4.3 (Quasi symplectic methods, [MT03]). We call a nu-
merical method Φh : R2dN × Ω quasi symplectic if

(i) Φh is symplectic in the frictionless case γ = 0,

(ii) D(Q,P ) Φh(Q,P, ω) does not depend on Q,P .
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The second requirement in Definition 4.3 is motivated by the contrac-
tion of the space under the Langevin flow. Let ϕt(·, ·, ω) be the flow
of the Langevin equation and let D0 be some closed bonded domain
in phase space then the volume contracts due to the transformation
formula ∫

ϕt(D0,ω)

dQ dP =

∫

D0

∣∣D(Q,P ) ϕt(Q,P, ω)
∣∣ dQ dP.

The Jacobian in the case of the Langevin equation is given by

D(X,V ) ϕt = e−γ t r(M)·(t−t0) .

The calculation is similar to the proof for the symplecticity of Hamilton
flows in Theorem 3.7. The existence of the Jacobian is granted by the
diffeomorphism Theorem A.1. For the natural assumptions γ > 0
and trace(M) > 0 we can observe a contraction in phase space. To
approximate geometric quantities, the second requirement should at
least ensure that the whole phase space is contracting equally under
the numerical flow.

The idea to get such schemes is to apply an operator splitting like

(I)

{
dQI = ∇PH dt

dPI = −∇QH dt+ σ dWt

(II)

{
dQII = 0 dt

dPII = −γPII dt
.

The first system is a Hamiltonian system with additive noise. For
systems of this type symplectic first order mean-square methods exist
[MRT02, Section 4]. The second system can be solved exactly.

Lemma 4.4 (Quasi-symplectic first order schemes, [MT03, Lemma
2.1]). Let ΦI be a symplectic method of first mean-square order for (I)
and ΦII be a first order method for (II). Then

ΦI
h/2 ◦ ΦII

h ◦ ΦI
h/2

and
ΦI
h ◦ ΦII

h

are a quasi-symplectic first mean-square order method.

A natural choice for ΦI is given by the stochastic version of the Störmer-
Verlet scheme.

Method 4.5 (Stochastic Störmer-Verlet, [MRT02, Method 4.1]). For
0 ≤ α ≤ 1 the scheme defined by

Qα = Q0 + αh∇PH(Q0,P0),

Pdet = P0 − h∇QH(Qα,P0),

Q1 = Qα + (1− α)h∇PH(Qα,P1),

P1 = P0 + σ∆h,
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is of first mean-square order and symplectic. For α = 1/2 we call the
method the stochastic Störmer-Verlet scheme. Taking α = 1 gives the
stochastic symplectic Euler method.

Method 4.6 (Quasi-symplectic Euler). Let ΦI
h denote the stochastic

symplectic Euler method 4.5 and let ΦII be denote the explicit Euler
method. We then call

ΦI
h ◦ ΦII

h

the quasi-symplectic Euler scheme.

Method 4.7 (Quasi-symplectic Störmer-Verlet). Let ΦI
h denote the

stochastic Störmer-Verlet Method 4.5 and let ΦII be the exact flow.
We then call

ΦI
h/2 ◦ ΦII

h ◦ ΦI
h/2

the quasi-symplectic Störmer-Verlet scheme.

4.2. Numerical examples.

Example 4.8 (Stochastic pendulum). To demonstrate the phase space
contraction under different schemes we consider the following system{

dq = −p dt

dp = −sin(q) dt− γp dt+ σ dWt.

We take the parameters γ = 0.1, σ = 0.1 and step size h = 0.1.

Euler-Maruyama
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Quasi-symplectic Euler
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Quasi-symplectic Verlet
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Figure 17. The contraction under the quasi-sympectic
schemes does perfectly fulfil the analytical prediction,
whereas the Euler-Maruyama schemes fails at this point.
.

5. Conclusion

The main focus of the thesis relies on symplectic integration. In both,
simple test cases as in large complex systems, these methods have
proven their effectiveness. We presented their mathematical found-
ation in the deterministic case and introduced the generalisation of
quasi-symplectic methods.
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Appendix A. Diffeomorphismtheorem

Theorem A.1 (Diffeomorphismtheorem, [KS12, Page 397] ). Suppose
that the coefficients a(x, t), b(x, t) satisfy the global Lipschitz and linear
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growth conditions∥∥a(x, t)− a(y, t)
∥∥+

∥∥b(t,x)− b(t,y)
∥∥ ≤ K‖x− y‖ ,

∥∥a(t,x)
∥∥2

+
∥∥b(t,x)

∥∥2 ≤ K2(1 +‖x‖2),

for every 0 ≤ t < ∞,x ∈ Rn,y ∈ Rn, where K is a positive constant.
Then there exist a strong solution X of

dX = a(Xt, t) dt+ b(Xt, t) dWt.

If additionally the coefficients a, b have bounded and continuous deriv-

atices of all order up to k ≥ 1, then there exist a version X̃ of X such
that for every t ≥ 0 the map

x 7→ X̃t(x, ω)

is almost surely a Ck−1 diffeomorphism.
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