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MOTIVATION




WE WANT TO SOLVE (MORE (0] LESS)

We want to solve equations like
(d*d+dd*)u=f
using mixed finite elements for

(u,oc =du).




AU = AU, STRONG FORMULATION

A =194 Az = 2.02 A3 =226

. Eigenvalues of 1-form Laplacian computed with P, elements :

computed eigenvalues
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AU = AU, MIXED FORMULATION

A =0 Ay =0.617 A3 = 0.658
Eigenvalues of 1-form Laplacian computed with FEEC
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THE ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex
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THE ESSENCE OF FEEC

Central is a short subchain of a Hilbert complex

d

k=1 VR d YR+

lﬂ—’?*1 lﬂ'h lﬂ’kﬂ

k—1 _ d kR d R+1
Vh Vh Vh

Three important properties for consistency and stability!
m approximation property: dist(V} . w) — o for allw € V!
m subcomplex property: d V! C VI
m bounded projection property: 7| is bounded.
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A HILBERT (COCHAIN) COMPLEX

... is a sequence of Hilbert spaces W* and linear operators’ d*

k—2 k—1 k R+
) d Wk—1 d Wk d Whkt1 d

Im (d'M) C Ker (d’*) .

such that

m Important property: dod = 0.
m There is a norm |-||y, st. d*=" : V=" — VR is bounded.

"unbounded, closed, densely defined



DUAL SPACES

Recall: For a vector space W, the dual space is

W* :={w:V — R |wis linear and bounded.}.




DUAL SPACES

Recall: For a vector space W, the dual space is

W* :={w:V — R |wis linear and bounded.}.

For
VA w
we get the adjoint map
Ve A e

via
A'(w): V= R:vi— w(A(v)).



THE DUAL CHAIN COMPLEX

Turing around arrows is fun?

k—2 k—1 k kR+1
) d s Wk d WR d WhH1 d

N

g Wan g We g Wi
—1 kR

dp_» dh’+1

2We use d; == (d')*.




THE DUAL CHAIN COMPLEX

Turing around arrows is fun?

k—2 B dk71 dk dk+1
ANV /e B AN VL N TS
dr—2 k=1 g, R d o drt1

Be careful: The adjoint of an unbounded operator has a different
domain!

2We use d; == (d')*.




ABSTRACT HODGE LAPLACE OPERATOR

We define

LR = d*d+dd*: Wk — wk




ABSTRACT HODGE LAPLACE OPERATOR

We define
LR = d*d+dd*: Wk — wk

The harmonic forms

Ker (Lk) = Ker (dk) N Ker (dg_,)

turn out to be crucial.




THE HODGE LAPLACE EQUATION

Never forget the kernel! We need to ensure existence of solutions

LRru=f - PrKer(Lk) (f)

and uniqueness

u L Ker (L'*) .




THE HODGE LAPLACE EQUATION

Never forget the kernel! We need to ensure existence of solutions
Lfu=f - Prier(1r) ()

and uniqueness
u L Ker (L'*) .

Are there any interesting examples?
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THREE NUMBERS # VECTORS # CO-VECTORS

Three numbers

(1,0,0)
might represent a direction
¥ € TR3
or an length element
dx € N'R3

or an area element

dxAdy € °R3.
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WORKING DEFINITION OF ALTERNATING FORMS

We define
Altf(V) = {w : VF — R | w is linear and alternating}.
Examples?

D ¢(p) € Alt'(R") = (R™)" det € Alt"(R").

Altk(V) ~ things that measure k-dimensional objects.

3 :R" - R, i.e. ¢(p) € Alt°(R")

12



WORKING DEFINITION OF DIFFERENTIAL FORMS

A smooth field of these 'measuring devices’ is called a
differential form

AR(Q) == C(Q, AltR(R™)).




WORKING DEFINITION OF DIFFERENTIAL FORMS

A smooth field of these 'measuring devices’ is called a
differential form

AR(Q) == C(Q, AltR(R™)).
We can define a derivative on these spaces via

dw = skew (Dw), w e AR(Q).




THE DE RHAM (CO-CHAIN) COMPLEX

grad curl div

c>(Q) 229 c=(Q,R3) —, c=(Q,R3) —, c>(Q)




THE DE RHAM (CO-CHAIN) COMPLEX

grad

C2(Q) £ co(Q,R3) 2 co(Q,R3) &Y
0 g —94 5 AQ d A2Q




THE DE RHAM (CO-CHAIN) COMPLEX

c(Q) &% (0, R3) X co(Q,R3) N c=(Q)

| | | |

o A°Q AN'Q A2Q ANQ — 0

The maps between the rows are not trivial!




THE L2-DE RHAM (CHAIN) COMPLEX

(grad,H") (curl,H(curl))
. -

12() 12(Q,R3) 12(Q,R3)

| ! l

12(Q (2K e 12(2 )

) ————
(—div,H(div))

(div,H(div))
—— L

(— grad,A")



THE L2-DE RHAM (CHAIN) COMPLEX

(grad,H") (curl,H(curl))
. -

12() 12(Q,R3) 12(Q,R3)

| ! l

L2(Q) «—— L2(Q,R3) +— L[?(Q,R3) -
(—div,H(div)) (curl,H(curl)) (—grad,H")
Examples
m L°= —divgrad + Neumann BC.

(div,H(div))
— L
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(grad,H") (curl,H(curl)) (div,H(div))
—= 5 T —
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| ! l |

12(Q (2K e 12(2 ) 12(Q)
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THE L2-DE RHAM (CHAIN) COMPLEX

(grad,H") (curl,H(curl)) (div,H(div))
—= 5 T — 5L

12() 12(Q,R3) 12(Q,R3)

| ! l |

12(Q (2K e 12(2 )

) :
(— div,f(div)) (— grad,H")
Examples

m L°= —divgrad + Neumann BC.

m L' = curlcurl —graddiv  + magnetic BC.

m [? = curlcurl —graddiv  + electric BC.

m [3 = —divgrad + Dirichlet BC.
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COHOMOLOGY

The cohomology spaces
2k = Ker (d¥) /Im ()

play a central role in homological algebra.

m If 7% = {0}, then we find a 'potential’
do=0 = o=du

for some u € Vk—1,
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The cohomology spaces are a topological invariants!

u:grad@,O%ﬂEHl u:grad%,(}#ﬁG'Hz

on cylindrical shell on spherical shell
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WHY DO WE CARE?

The cohomology spaces are a topological invariants!
dim (’Hk> ~ k-dim holes of the domain.

HR =~ Ker (Lk)

Central philosophy of FFEC:
Try to preserve geometric invariants!




EXAMPLE FOR HODGE LAPLACE EQUA-
TIONS AND RELATIVES




LAPLACE EQUATION

Using the subcomplex

grad
—

o —— H'(Q) HY(, curl)

yields the Laplace equation with Neumann boundary conditions.
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ELASTICITY

There are more interesting Hilbert complexes than just de
Rham’s complex!
H Q) oV 2@ es ™ B2Q) s N B2Q) eV

m inc(F) == curl ((M(F))T>

m Mixed formulation of this scary complex are mixed elements
for a (displacement, deformation, strain) formulation with
strong symmetry.



HODGE WAVE EQUATION

This beautiful equation

()-(33 266

can be used to study

D — curlH = —j,
B+cur|E:O,
divB = 0,
divD = q.




DISCRETISATION OF HILBERT COM-
PLEXES




THE ESSENCE OF FEEC

For finite dimensional approximation spaces V;, C V!, we can
consider the induced Hilbert complex

vk d Vk+1
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COHOMOLOGY IS PRESERVED

Under very mild conditions we get

HE = 3k,




POINTCARAL INEQUALITIES

Typical tools from Sobolev theory also pop-up in the more
general case of Hilbert complexes

Izl < colldz] forallz e (Ker (d¥)) ™"




PERIODIC TABLE OF FINITE ELEMENTS

Ak k=1 k=2 k=3
P-A -
n= =2 ——
=3 ————
JAN
- =2 DG
Lagrange
r=

T el
N

[ 3 =

N
|
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WARM SOUP OR JUST HOT WATER?

m Unified theory for mixed finite elements for PDEs involving
grad, curl, div.

m A construction of new stable finite elements for
quasi-incompressible elasticity.

m Most complexes can be derived with tools from homological
algebra.

Still... very abstract and damm confusing.



THANKS FOR YOUR ATTENTION!
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