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Partially mesoscopic systems Numerics Muscles Source terms

The principle question

L :=

heavy

L0(r , ṙ) +
∑n

j=1

particles

L1(qj , q̇j)

g(r , qj) = const.

for large values of n, we need statistical ensembles...

Euler-Lagrange Partially mesoscopic Liouville
equation system equation

unknowns r , ṙ , qj , λj r , ṙ , ρ(q, t), λ(q) ρ(r , ṙ , q, t)
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Point of Departure

The equation of motion are given by

M0r̈ = −∂rL0(r , ṙ)−
∑n

i=1 λi∂rg(r , qi ), (1)

M1q̈j = −∂qL1(qj , q̇j)− λj∂qg(r , qj), (2)

0 = g(r , qj)− cj , for all j = 1, . . . n. (3)

The same constraint function g(r , q) for all n particles! But cj
depends on the initial conditions.
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M1q̈j = −∂qL1(qj , q̇j)− λj∂qg(r , qj), (2)

0 = g(r , qj)− cj , for all j = 1, . . . n. (3)

Main assumption

∂qg is invertible and g ∈ C 2(Rnr × Rnq ;Rnq).

→ the state of the heavy system (r , ṙ) determines at least locally the
complete state (r , ṙ , . . . , qj(r), q̇j(r , ṙ), . . . )!
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Toy example

We consider a very heavy spring

L0(r , ṙ) =
1

2
m0ṙ

2 +
1

2
κ0r

2

and many very light springs

1

n
L1(q, q̇) =

1

2

m1

n
q̇2 +

1

2

κ1

n
q2

combined as

L = L0 +
1

n

n∑
j=1

L1, g(r , qj) = r − qj − (r(0)− qj(0))︸ ︷︷ ︸
=:cj

.
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Toy example

heavy system particlesconstraint
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Recall: Liouville’s equation

If we consider a (arbitrary) Hamilton system H(q, p) and an initial
density ρ0(q, p), then the evolution of

ρ(q(t), p(t), t) := ρ0(q(0), p(0))

is determined by the Liouville equation

0 =
dρ

dt
=
∂ρ

∂q

∂H

∂p
− ∂ρ

∂p

∂H

∂q
+
∂ρ

∂t
.
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Liouville equation of the complete system.

The Liouville equation for

L := L0 + L1, g = 0

replaces also the state of the heavy system (r , ṙ) by a density!

Interaction forces between L0 and L1 are not accumulated!
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Derivation of the partially mesoscopic description

New approach: We only represent the state of all n particles by a
density ρ(q, t).
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0 = ∂rg ṙ + ∂qgq̇. (7)
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i=1 λi∂rg(r , qi ), (4)

M1q̈j = −∂qL1(qj , q̇j)− λj∂qg(r , qj), (5)

v1(r) := −(∂qg)−1∂rg ṙ , (6)

a1(r) :=
d

dt
v1(r(t), ṙ(t), r̈(t)). (7)

Steffen Plunder, Prof. Bernd Simeon Partially mesoscopic and Lagrangian systems 9/ 26



Partially mesoscopic systems Numerics Muscles Source terms

Derivation of the partially mesoscopic description

New approach: We only represent the state of all n particles by a
density ρ(q, t).

M0r̈ = −∂rL0(r , ṙ)−
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λ(q)∂rg(r , q) ρ(q) dq, (4)
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Equation of partially mesoscopic systems

M0r̈ = −∂rL0 −
∫
λ(q)∂rg(r , q)ρ(q, t)dq, (8)

∂tρ+ v1(ṙ) ∂qρ = 0, (9)

λ(q)∂qg = M1a1(r̈) + ∂qL1 (10)

with the definition

v1(ṙ ; q, r) := −
(
∂qg

)−1
∂rg [ṙ ], (11)

a1(r̈ ; q, r , ṙ) := −(∂qg)−1(∂2
r g [ṙ,ṙ ]+2∂r∂qg[ṙ,v1(ṙ)]∂2

qg[v1(ṙ),v1(ṙ)]+∂r g [r̈ ]). (12)
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Toy example

tons of springs...
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Clash of numerical philosophies...

• We have classical physical system

M0r̈ = −∂rL0 −
∫
λ(q)∂rg(r , q)ρ(q, t) dq.

⇒ maybe symplectic methods?

• There is a conservation law

∂tρ+ v1(ṙ) ∂qρ = 0.

⇒ maybe upwind? Or more complicated?

• And it is still a DAE of Index 1

λ(q)∂qg = M1a1(r̈) + ∂qL1.
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Partially mesoscopic systems Numerics Muscles Source terms

Clash of numerical philosophies...

• We have classical physical system

M0r̈ = −∂rL0 −
∫
λ(q)∂rg(r , q)ρ(q, t) dq.

⇒ maybe symplectic methods?

• There is a conservation law
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Clash of numerical philosophies...
• Semi-Lagrangian approach: If g is linear w.r.t. q, then we just

need to approximate the shift

h(t) =

∫
0
v1(s)ds.

and set
ρ(q, t) = ρ(q − h(t), 0).

– h(t) can be integrated in a symplectic manner!

• Upwind: Boundary conditions for the conservation law are
missing!

– It is unclear how symplectic methods are defined for the
integration of the conservation law.
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Toy-Example: Euler-Lagrange vs. Partially Mesoscopic

If the initial values qj are normally distributed, a direct simulation or a
Monte-Carlo simulation requires far more degrees of freedom

(n ≈ 104) for good convergence, compared to a semi-Lagrangian
scheme (nρ ≈ 30).
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Euler-Lagrange, Monte-Carlo

0 20 40 60 80 100
time

−10

−8

−6

−4

−2

0

r
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Semi-Lagrangian Approach
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Upwind

0 20 40 60 80 100
time

−10

−8

−6

−4

−2

0

r
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Muscle tissue
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Muscle tissue

nonlinear

(quasi)-incompressible

hyperelastic body

many linear springs

(at each material point)

muscle bers

(direction of contraction stress)
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Basically same, but a tiny little bit infinite dimensional

• Heavy system ’L0(u,∇u, u̇;X , t)’: Nonlinear
quasi-incompressible hyperelastic solid. (Classical field theory)

• Particle systems ’
∑

j L1(qj(X ), q̇j(X ), t)’: Actin-Myosin
cross-bridges in each sarcomere (muscle cell).

• Constraints ’g(u(X ),∇u(X ), qj(X )) = 0’ for all material points
X and all particles j .

Classical field theory fits nicely to this theory
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Muscles as a “partially mesoscopic system”

m0ϕ̈ = Div (P − λG ) ,

∂tρ− v1∂qρq = 0,

λG :=

∫
R
λ(q)Gρ(q)dq,

λ(q) := κ1q −m1
d2

dt2
‖nfiber‖ ,

P =
∂L
∂Dϕ

, G =
∂g

∂Dϕ
, g = ‖nfiber‖ − q.

The Lagrangian multiplier is a scalar field, defining strength of the
active contraction stress.
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Non-conservative part of muscle models!

m0ϕ̈ = Div (P − λG ) ,

∂tρ− v1∂qρq = f · (1− ρ)− g · ρ,

λG :=

∫
R
λ(q)Gρ(q)dq,

λ(q) := κ1q −m1
d2

dt2
‖nfiber‖ ,

P =
∂L
∂Dϕ

, G =
∂g

∂Dϕ
, g = ‖nfiber‖ − q.

Change of contraction strength is non-conservative!
It is possible to recruit new cross-bridges (f ) or to detach (g).
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Numerical challenges

• Source terms in the transport equation

∂tρ− v1∂qρ = f · (1−ρ) + g · ρ,

lead to a stiff system!

– Semi-Lagrangian integration is unstable for discontinuous
f (q), g(q).

• dρ

dt
6= 0 corresponds to creation (n 7→ n + 1) or annihilation

(n 7→ n − 1) of particles.

– Modeling as a Port-Hamiltonian system possible?!
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Colourful but unstable for large deformations...
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Conclusion

• We developed a framework for coupling between classical
Lagrangian and mesoscopic systems.

• Naive, simple and computational efficient methods for the
conservative case are available.

• The non-conservative case is numerically difficult: a mix
between different numerical philosophies is required.

– Notion of symplectic numerical schemes not defined for
partially mesoscopic systems.

– Source terms lead to a stiff system.
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Thanks for your attention!
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